题目内容
19.已知抛物线C:y2=2px(p>0)的准线与双曲线E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的两条渐近线分别交于A、B两点,若△AOB(O为坐标原点)的面积为4$\sqrt{2}$,且双曲线E的离心率为$\sqrt{3}$,则抛物线C的准线方程为( )| A. | $x=-\frac{1}{2}$ | B. | x=-1 | C. | $x=-\sqrt{3}$ | D. | x=-2 |
分析 由离心率公式和a,b,c的关系得$\frac{b}{a}$,即可得到双曲线的渐近线方程;写出抛物线的准线方程,代入渐近线方程,可得A,B的坐标,得到AB的距离,由三角形的面积公式,计算即可得到p的值.
解答 解:由双曲线的离心率为$\sqrt{3}$,可得$\frac{c}{a}=\sqrt{3}$,
∴$\frac{{a}^{2}+{b}^{2}}{{a}^{2}}=3$,即$\frac{b}{a}=\sqrt{2}$,
∴双曲线E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的两条渐近线方程为y=±$\frac{b}{a}$x=$±\sqrt{2}x$,
∵抛物线C:y2=2px(p>0)的准线方程为x=-$\frac{p}{2}$,
由$\left\{\begin{array}{l}{x=-\frac{p}{2}}\\{y=\sqrt{2}x}\end{array}\right.$得A(-$\frac{p}{2}$,-$\frac{\sqrt{2}}{2}p$),同理得B(-$\frac{p}{2},\frac{\sqrt{2}}{2}p$)
△AOB(O为坐标原点)的面积为$\frac{1}{2}×\frac{p}{2}×\sqrt{2}p$=4$\sqrt{2}$,解得p=4
∴准线方程为x=-2.
故选:D.
点评 本题考查双曲线的渐近线方程的求法,注意运用离心率公式和a,b,c的关系,考查抛物线的方程和性质,以及三角形的面积公式的计算,属于中档题
练习册系列答案
相关题目
7.已知全集U=R,集合$A=\left\{{x|y=\sqrt{1-x}}\right\}$,集合B={x|x2-2x<0},则A∩B等于( )
| A. | [1,2) | B. | (1,2) | C. | [0,1] | D. | (0,1] |
14.有2个男生和2个女生一起乘车去抗日战争纪念馆参加志愿者服务,他们依次上车,则第二个上车的是女生的概率为( )
| A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
11.某种产品的质量以其质量指标值衡量,并依据质量指标值划分等极如下表:
从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:

(Ⅰ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品90%”的规定?
(Ⅱ)在样本中,按产品等极用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;
(III)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值X近似满足X~N(218,140}),则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?
| 质量指标值m | m<185 | 185≤m<205 | m≥205 |
| 等级 | 三等品 | 二等品 | 一等品 |
(Ⅰ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品90%”的规定?
(Ⅱ)在样本中,按产品等极用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;
(III)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值X近似满足X~N(218,140}),则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?