题目内容
16.已知{an}为等差数列,且a3+a4=3(a1+a2),a2n-1=2an.(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为Sn,且Sn=m-$\frac{{{a_n}+1}}{2^n}$(m为常数).令cn=b2n (n∈N*),求数列{cn}的前n项和Tn.
分析 (1)设等差数列{an}的公差为d,运用等差数列的通项公式,解方程可得首项和公差,即可得到所求通项公式;
(2)求得cn=b2n=$\frac{2n-2}{{2}^{2n-1}}$=(n-1)•($\frac{1}{4}$)n-1,再由数列的求和方法:错位相减法,结合等比数列的求和公式,即可化简可得.
解答 解:(1)设等差数列{an}的公差为d,
由a3+a4=3(a1+a2)得:
a1+2d+a1+3d=3(a1+a1+d)⇒2a1=d①
由a2n-1=2an得:a1+(2n-1)d-1=2[a1+(n-1)d]⇒a1=d-1②
由①②得:a1=1,d=2,∴an=2n;
(2)当n≥2时,${b_n}={S_n}-{S_{n-1}}=m-\frac{{{a_n}+1}}{2^n}-(m-\frac{{{a_{n-1}}+1}}{{{2^{n-1}}}})=\frac{n-2}{{{2^{n-1}}}}$,
∴cn=b2n=$\frac{2n-2}{{2}^{2n-1}}$=(n-1)•($\frac{1}{4}$)n-1,
${T_n}=0×{(\frac{1}{4})^0}+1×{(\frac{1}{4})^1}+2×{(\frac{1}{4})^2}+…+(n-1)×{(\frac{1}{4})^{n-1}}$,$\frac{1}{4}{T_n}=0×{(\frac{1}{4})^1}+1×{(\frac{1}{4})^2}+2×{(\frac{1}{4})^3}+…+(n-2)×{(\frac{1}{4})^{n-1}}+(n-1)×{(\frac{1}{4})^n}$,
两式相减得:
$\frac{3}{4}{T_n}={(\frac{1}{4})^1}+{(\frac{1}{4})^2}+{(\frac{1}{4})^3}+…+{(\frac{1}{4})^{n-1}}-(n-1)×{(\frac{1}{4})^n}=\frac{{\frac{1}{4}-{{(\frac{1}{4})}^n}}}{{1-\frac{1}{4}}}-(n-1)×{(\frac{1}{4})^n}$
=$\frac{1}{3}-\frac{3n+1}{3}•{(\frac{1}{4})^n}$,
∴${T_n}=\frac{4}{9}-\frac{3n+1}{9}•{(\frac{1}{4})^{n-1}}$.
点评 本题考查等差数列的通项公式的运用,考查数列的求和方法:错位相减法,考查运算能力,属于中档题.
| A. | 1007 | B. | 2015 | C. | 2016 | D. | 3024 |
| A. | $y=sin(2x-\frac{π}{6})$ | B. | $y=cos(2x-\frac{π}{6})$ | C. | $y=cos(\frac{x}{2}+\frac{π}{3})$ | D. | $y=sin(\frac{x}{2}+\frac{π}{3})$ |