题目内容

17.袋中有6个黄色、4个白色的乒乓球,做不放回抽样,每次任取1个球,取2次,则关于事件“直到第二次才取到黄色球”与事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率说法正确的是(  )
A.事件“直到第二次才取到黄色球”与事件“第一次取到白球的情况下,第二次恰好取得黄球”的概率都等于$\frac{2}{3}$
B.事件“直到第二次才取到黄色球”与事件“第一次取到白球的情况下,第二次恰好取得黄球”的概率都等于$\frac{4}{15}$
C.事件“直到第二次才取到黄色球”的概率等于$\frac{2}{3}$,事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率等于$\frac{4}{15}$
D.事件“直到第二次才取到黄色球”的概率等于$\frac{4}{15}$,事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率等于$\frac{2}{3}$

分析 设事件A表示“直到第二次才取到黄色球”,利用相互独立事件概率乘法公式能求出P(A);设事件B表示“第一次取得白球的情况下,第二次恰好取得黄球”,利用条件概率计算公式能求出P(B).

解答 解:袋中有6个黄色、4个白色的乒乓球,做不放回抽样,每次任取1个球,取2次,
设事件A表示“直到第二次才取到黄色球”,
事件B表示“第一次取得白球的情况下,第二次恰好取得黄球”,
则P(A)=$\frac{4}{10}×\frac{6}{9}$=$\frac{4}{15}$,
P(B)=$\frac{\frac{2}{5}×\frac{2}{3}}{\frac{2}{5}}$=$\frac{2}{3}$.
故选:D.

点评 本题考查概率的求法,考查相互独立事件概率乘法公式、条件概率计算公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网