题目内容
8.若圆x2+y2-2kx+2y+2=0(k>0)与两坐标轴无公共点,那么实数k的取值范围为( )| A. | -1<k<1 | B. | 1<k<$\sqrt{2}$ | C. | 1<k<2 | D. | $\sqrt{2}$<k<2 |
分析 求出它的圆心与半径,利用圆心到坐标轴的距离对于半径,列出关系式即可求出k的范围.
解答 解:圆x2+y2-2kx+2y+2=0(k>0)的圆心(k,-1),半径为r=$\frac{1}{2}\sqrt{4{k}^{2}+4-8}$=$\sqrt{{k}^{2}-1}$,
∵圆x2+y2-2kx+2y+2=0(k>0)与两坐标轴无公共点,
∴$\sqrt{{k}^{2}-1}$<1,解得1<k<$\sqrt{2}$.
故选:B.
点评 本题考查实数k的取值范围的求法,考查圆、直线方程等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
练习册系列答案
相关题目
13.离心率为$\frac{{\sqrt{3}}}{2}$,且过点(2,0)的椭圆的标准方程是( )
| A. | $\frac{x^2}{4}+{y^2}=1$ | B. | $\frac{x^2}{4}+{y^2}=1$或${x^2}+\frac{y^2}{4}=1$ | ||
| C. | x2+4y2=1 | D. | $\frac{x^2}{4}+{y^2}=1$或$\frac{x^2}{4}+\frac{y^2}{16}=1$ |
20.命题“?x0∈R,${x_0}^2-{x_0}+1≤0$”的否定为( )
| A. | ?x0∈R,${x_0}^2-{x_0}+1≤0$ | B. | ?x0∈R,${x_0}^2-{x_0}+1>0$ | ||
| C. | ?x∈R,x2-x+1≤0 | D. | ?x∈R,x2-x+1>0 |
17.袋中有6个黄色、4个白色的乒乓球,做不放回抽样,每次任取1个球,取2次,则关于事件“直到第二次才取到黄色球”与事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率说法正确的是( )
| A. | 事件“直到第二次才取到黄色球”与事件“第一次取到白球的情况下,第二次恰好取得黄球”的概率都等于$\frac{2}{3}$ | |
| B. | 事件“直到第二次才取到黄色球”与事件“第一次取到白球的情况下,第二次恰好取得黄球”的概率都等于$\frac{4}{15}$ | |
| C. | 事件“直到第二次才取到黄色球”的概率等于$\frac{2}{3}$,事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率等于$\frac{4}{15}$ | |
| D. | 事件“直到第二次才取到黄色球”的概率等于$\frac{4}{15}$,事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率等于$\frac{2}{3}$ |
1.已知圆C:(x+1)2+y2=32,直线l与一、三象限的角平分线垂直,且圆C上恰有三个点到直线l的距离为2$\sqrt{2}$,则直线l的方程为( )
| A. | y=-x-5 | B. | y=-x+3 | C. | y=-x-5或y=-x+3 | D. | 不能确定 |