题目内容
11.把函数y=sinx(x∈R)的图象上所有点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),再把所得图象上所有向左平行移动$\frac{π}{3}$个单位长度,得到的图象所表示的函数是( )| A. | $y=sin(2x-\frac{π}{3}),x∈R$ | B. | $y=sin(\frac{x}{2}+\frac{π}{6}),x∈R$ | C. | $y=sin(2x+\frac{π}{3}),x∈R$ | D. | $y=sin(2x+\frac{2π}{3}),x∈R$ |
分析 利用y=Asin(ωx+φ)的图象变换规律,得出结论.
解答 解:把函数y=sinx(x∈R)的图象上所有点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),
可得y=sin2x的图象;
再把所得图象上所有向左平行移动$\frac{π}{3}$个单位长度,得到的图象所表示的函数是y=sin(2x+$\frac{2π}{3}$),
故选:D.
点评 本题主要考查y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关题目
2.已知命题“?x∈R,x2-2ax+3≥0”是假命题,则实数a的取值范围为( )
| A. | $a=\sqrt{3}$ | B. | $a>\sqrt{3}$或$a<-\sqrt{3}$ | C. | $-\sqrt{3}<a<\sqrt{3}$ | D. | $-\sqrt{3}≤a≤\sqrt{3}$ |
19.
已知函数f(x)=Asin(wx+φ)(其中A>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,将函数的图象向左平移$\frac{π}{6}$个单位长度得到函数g(x)的图象,则函数g(x)的解析式为( )
| A. | g(x)=2sin(2x-$\frac{π}{3}$) | B. | g(x)=2sin(2x+$\frac{π}{6}$) | C. | g(x)=-2sin(2x-$\frac{π}{3}$) | D. | g(x)=-2sin(2x+$\frac{π}{6}$) |
16.
执行如图所示的程序框图,若输出S的值为-1,则判断框内,对于下列四个关于n的条件的选项,不能填入的是( )
| A. | n>3? | B. | n>5? | C. | n>32? | D. | n>203? |
3.甲、乙、丙三位同学被问到是否去过济南、潍坊、青岛三个城市时,甲说:我去过的城市比乙多,但没去过潍坊;乙说:我没去过青岛;丙说:我们三人去过同一城市;由此可判断乙去过的城市为( )
| A. | 济南 | B. | 青岛 | C. | 济南和潍坊 | D. | 济南和青岛 |
20.在三角形ABC中,$\overrightarrow{BC}=\overrightarrow{a},\overrightarrow{CA}=\overrightarrow{b}$,则$\overrightarrow{AB}$=( )
| A. | $\overrightarrow a-\overrightarrow b$ | B. | $\overrightarrow b-\overrightarrow a$ | C. | $\overrightarrow b+\overrightarrow a$ | D. | $-\overrightarrow a-\overrightarrow b$ |
1.
在正方形网格中,某四面体的三视图如图所示.如果小正方形网格的边长为1,那么该四面体最长棱的棱长为( )
| A. | $2\sqrt{5}$ | B. | $4\sqrt{2}$ | C. | 6 | D. | $4\sqrt{3}$ |