题目内容
12.在△ABC中,角A、B、C所对的边分别为a、b、c,若满足a=4,A=30°的三角形的个数恰好为一个,则b的取值范围是(0,4]∪{8}.分析 利用正弦定理得出b=8sinB,根据B+C的度数和三角形只有一解,可得B只有一个值,根据正弦函数的性质得到B的范围,从而得出b的范围.
解答 解:∵A=30°,a=4,
根据正弦定理得:$\frac{a}{sinA}=\frac{b}{sinB}$,
∴b=8sinB,
又B+C=180°-30°=150°,且三角形只一解,可得B有一个值,
∴0<B≤30°,或B=90°.
∴0<sinB≤$\frac{1}{2}$,或sinB=1,
又b=8sinB,
∴b的取值范围为(0,4]∪{8}.
故答案为:(0,4]∪{8}.
点评 本题考查了正弦定理,正弦函数的性质,特殊角的三角函数值,属于中档题.
练习册系列答案
相关题目
2.
如图,四边形ABCD是正方形,延长CD至E,使得DE=CD,若点P为CD的中点,且$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AE}$,则λ+μ=( )
| A. | 3 | B. | $\frac{5}{2}$ | C. | 2 | D. | 1 |
3.设?x?表示不小于实数x的最小整数,如?2.6?=3,?-3.5?=-3.已知函数f(x)=?x?2-2?x?,若函数F(x)=f(x)-k(x-2)+2在(-1,4]上有2个零点,则k的取值范围是( )
| A. | $[{-\frac{5}{2},-1})∪[2,5)$ | B. | $({-\frac{4}{3},-1}]∪[5,10)$ | C. | $[{-1,-\frac{2}{3}})∪[5,10)$ | D. | $[{-\frac{4}{3},-1}]∪[5,10)$ |
17.抛物线M的顶点是坐标原点O,抛物线M的焦点F在x轴正半轴上,抛物线M的准线与曲线x2+y2-6x+4y-3=0只有一个公共点,设A是抛物线M上的一点,若$\overrightarrow{OA}$•$\overrightarrow{AF}$=-4,则点A的坐标是( )
| A. | (-1,2)或(-1,-2) | B. | (1,2)或(1,-2) | C. | (1,2) | D. | (1,-2) |