题目内容

14.将函数f(x)=sin(2x+$\frac{π}{6}$)图象上所有点向右平移$\frac{π}{6}$个单位得到函数y=g(x)的图象,则y=g(x)的图象的一条对称轴是直线(  )
A.x=$\frac{π}{12}$B.x=$\frac{π}{6}$C.x=-$\frac{π}{6}$D.x=$\frac{2π}{3}$

分析 由条件利用y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的图象的对称性,得出结论.

解答 解:将函数f(x)=sin(2x+$\frac{π}{6}$)图象上所有点向右平移$\frac{π}{6}$个单位得到函数y=g(x)=sin[2(x-$\frac{π}{6}$)+$\frac{π}{6}$]
=sin(2x-$\frac{π}{6}$)的图象,
令2x-$\frac{π}{6}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z,
则y=g(x)的图象的一条对称轴是直线x=-$\frac{π}{6}$,
故选:C.

点评 本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网