题目内容

15.如图,在△ABC中,∠B=$\frac{π}{3}$,D为边BC上的点,E为AD上的点,且AE=8,AC=4$\sqrt{10}$,∠CED=$\frac{π}{4}$.
(1)求CE的长
(2)若CD=5,求cos∠DAB的值.

分析 (1)由已知可求∠AEC,在△AEC中,由余弦定理可得$C{E^2}+8\sqrt{2}CE-96=0$,即可解得CE的值.
(2)在△CDE中,由正弦定理可求$sin∠CDE=\frac{4}{5}$,利用同角三角函数基本关系式可求$cos∠CDE=-\frac{3}{5}$,进而利用两角差的余弦函数公式可求cos∠DAB的值.

解答 (本题满分为12分)
解:(1)∵$∠AEC=π-\frac{π}{4}=\frac{3π}{4}$,…(1分)
在△AEC中,由余弦定理得AC2=AE2+CE2-2AE•CEcos∠AEC,…(2分)
∴$160=64+C{E^2}+8\sqrt{2}CE$,
∴$C{E^2}+8\sqrt{2}CE-96=0$,…(4分)
∴$CE=4\sqrt{2}$.…(5分)
(2)在△CDE中,由正弦定理得$\frac{CE}{sin∠CDE}=\frac{CD}{sin∠CED}$,…(6分)
∴$5sin∠CDE=4\sqrt{2}×\frac{{\sqrt{2}}}{2}$,
∴$sin∠CDE=\frac{4}{5}$,…(7分)
∵点D在边BC上,
∴$∠CDE>∠B=\frac{π}{3}$,
而$\frac{4}{5}$<$\frac{\sqrt{3}}{2}$,
∴∠CDE只能为钝角,…(8分)
∴$cos∠CDE=-\frac{3}{5}$,…(9分)
∴$cos∠DAB=cos(∠CDE-\frac{π}{3})$,…(10分)
=$cos∠CDEcos\frac{π}{3}+sin∠CDEsin\frac{π}{3}$=$-\frac{3}{5}×\frac{1}{2}+\frac{4}{5}×\frac{{\sqrt{3}}}{2}$=$\frac{{4\sqrt{3}-3}}{10}$.…(12分)

点评 本题主要考查了余弦定理,正弦定理,同角三角函数基本关系式,两角差的余弦函数公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网