ÌâÄ¿ÄÚÈÝ
9£®ÖйúƹÅÒÇò¶Ó±¸Õ½ÀïÔ¼°ÂÔË»áÈÈÉíÈüôßÑ¡²¦ÈüÓÚ2016Äê7ÔÂ14ÈÕÔÚɽ¶«Íþº£¿ªÈü£¬ÖÖ×ÓÑ¡ÊÖAÓë·ÇÖÖ×ÓÑ¡ÊÖB1£¬B2£¬B3·Ö±ð½øÐÐÒ»³¡¶Ô¿¹Èü£¬°´ÒÔÍù¶à´Î±ÈÈüµÄͳ¼Æ£¬A»ñʤµÄ¸ÅÂÊ·Ö±ðΪ$\frac{3}{4}£¬\frac{2}{3}£¬\frac{1}{2}$£¬ÇÒ¸÷³¡±ÈÈü»¥²»Ó°Ï죮£¨¢ñ£©ÈôAÖÁÉÙ»ñʤÁ½³¡µÄ¸ÅÂÊ´óÓÚ$\frac{2}{3}$£¬ÔòAÈëÑ¡Õ÷Õ½ÀïÔ¼°ÂÔË»áµÄ×îÖÕÃûµ¥£¬·ñÔò²»ÓèÈëÑ¡£¬ÎÊAÊÇ·ñ»áÈëÑ¡×îÖÕµÄÃûµ¥£¿
£¨¢ò£©ÇóA»ñʤ³¡ÊýXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
·ÖÎö £¨¢ñ£©ÀûÓÃÏ໥¶ÀÁ¢Ê¼þµÄ¸ÅÂʹ«Ê½£¬½áºÏÌõ¼þ£¬¼´¿ÉÇó½â£»
£¨¢ò£©¾ÝÌâÒ⣬XµÄ¿ÉÄÜֵΪ0¡¢1¡¢2¡¢3£¬Çó³ö¸ÅÂÊ£¬Áгö·Ö²¼ÁУ¬È»ºóÇó½âÆÚÍû£®
½â´ð ½â£º£¨¢ñ£©¼Ç¡°ÖÖ×ÓAÓë·ÇÖÖ×ÓB1¡¢B2¡¢B3±ÈÈü»ñʤ¡±·Ö±ðΪʼþA1¡¢A2¡¢A3$A={A_1}{A_2}{A_3}+\overline{A_1}{A_2}{A_3}+{A_1}\overline{A_2}{A_3}+{A_1}{A_2}\overline{A_3}$$P£¨A£©=P£¨{A_1}{A_2}{A_3}+\overline{A_1}{A_2}{A_3}+{A_1}\overline{A_2}{A_3}+{A_1}{A_2}\overline{A_3}£©$=$\frac{17}{24}£¾\frac{2}{3}$
ËùÒÔ£¬AÈëÑ¡×îÖÕÃûµ¥¡.6
£¨¢ò£©XµÄ¿ÉÄÜֵΪ0¡¢1¡¢2¡¢3
$\begin{array}{l}P£¨x=0£©=\frac{1}{4}•\frac{1}{3}•\frac{1}{2}=\frac{1}{24}\\ P£¨x=1£©=\frac{3}{4}•\frac{1}{3}•\frac{1}{2}+\frac{1}{4}•\frac{2}{3}•\frac{1}{2}+\frac{1}{4}•\frac{1}{3}•\frac{1}{2}=\frac{6}{24}\\ P£¨x=2£©=\frac{3}{4}•\frac{2}{3}•\frac{1}{2}+\frac{3}{4}•\frac{1}{3}•\frac{1}{2}+\frac{1}{4}•\frac{2}{3}•\frac{1}{2}=\frac{11}{24}\\ P£¨x=3£©=\frac{3}{4}•\frac{2}{3}•\frac{1}{2}=\frac{6}{24}\end{array}$
ËùÒÔ£¬XµÄ·Ö²¼ÁÐΪ
| X | 0 | 1 | 2 | 3 |
| P | $\frac{1}{24}$ | $\frac{6}{24}$ | $\frac{11}{24}$ | $\frac{6}{24}$ |
µãÆÀ ±¾Ì⿼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁУ¬ÆÚÍûµÄÇ󷨣¬¿¼²é¼ÆËãÄÜÁ¦£®
| A£® | $\sqrt{2}$ | B£® | $\sqrt{2}$»ò2 | C£® | $\frac{1}{2}$»ò2 | D£® | $\frac{1}{2}»ò\sqrt{2}$ |
| A£® | i | B£® | -i | C£® | 1 | D£® | -1 |