题目内容

1.(Ⅰ)已知x2+y2=1,求2x+3y的取值范围;
(Ⅱ)已知a2+b2+c2-2a-2b-2c=0,求证:$2a-b-c≤3\sqrt{2}$.

分析 (Ⅰ)已知x2+y2=1,由柯西公式(x2+y2)(4+9)≥(2x+3y)2,即可求2x+3y的取值范围;
(Ⅱ)由柯西公式[(a-1)2+(1-b)2+(1-c)2](4+1+1)≥[2(a+1)+(1-b)+(1-c)]2,即可证明结论.

解答 (Ⅰ)解:由柯西公式(x2+y2)(4+9)≥(2x+3y)2
则|2x+3y|$≤\sqrt{13}$,
∴-$\sqrt{13}$≤2x+3y≤$\sqrt{13}$.
(Ⅱ)证明:由a2+b2+c2-2a-2b-2c=0,得(a-1)2+(1-b)2+(1-c)2=3,
由柯西公式[(a-1)2+(1-b)2+(1-c)2](4+1+1)≥[2(a+1)+(1-b)+(1-c)]2
得证:18≥(2a-b-c)2,所以$2a-b-c≤3\sqrt{2}$.

点评 本题考查柯西公式的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网