题目内容

3.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}-2x(x≥0)\\{x^2}-2x(x<0)\end{array}$,又α,β为锐角三角形两锐角则(  )
A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)C.f(sinα)>f(sinβ)D.f(cosα)>f(cosβ)

分析 先判断函数f(x)的单调性,由α,β为锐角三角形的两个锐角,可得α+β>$\frac{π}{2}$,进而β>$\frac{π}{2}$-α,且β,$\frac{π}{2}$-α均为锐角,结合正弦函数的单调性和诱导公式5,可得结论.

解答 解:作出函数f(x)的图象,则函数为单调递减函数,
∵α,β为锐角三角形的两个锐角,
∴α+β>$\frac{π}{2}$,
∴β>$\frac{π}{2}$-α,且β,$\frac{π}{2}$-α均为锐角,
∴sinβ>sin($\frac{π}{2}$-α)=cosα,
cosβ<cos($\frac{π}{2}$-α)=sinα,
∴f(sinα)<f(cosβ),
故选:B.

点评 本题主要考查函数值的大小比较,根据数形结合判断函数的单调性,结合三角函数的诱导公式进行化简是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网