题目内容
函数f(x)=loga|x-1|在(0,1)上递减,那么f(x)在(1,+∞)上( )
| A、递增且无最大值 |
| B、递减且无最小值 |
| C、递增且有最大值 |
| D、递减且有最小值 |
考点:对数函数图象与性质的综合应用
专题:函数的性质及应用
分析:设u=|x-1|,考查函数u的单调性,结合f(x)在(0,1)上的单调性,得出a>1;从而得出f(x)在(1,+∞)上的单调性与最值情况.
解答:
解:设u=|x-1|,
∵(0,1)是u的递减区间,且f(x)=loga|x-1|在(0,1)上递减,
∴a>1;
又∵(1,+∞)是u的递增区间,
∴f(x)在(1,+∞)上递增且无最大值.
故选:A.
∵(0,1)是u的递减区间,且f(x)=loga|x-1|在(0,1)上递减,
∴a>1;
又∵(1,+∞)是u的递增区间,
∴f(x)在(1,+∞)上递增且无最大值.
故选:A.
点评:本题考查了复合函数的单调性与最值的应用问题,解题时应判定复合函数的单调性,根据单调性判定最值问题,是基础题.
练习册系列答案
相关题目
已知角α的终边经过点P(3t,-4t)(t≠0),则sinα+cosα的值为( )
A、
| ||
B、
| ||
C、-
| ||
D、±
|
直线l:y+kx+2=0与曲线C:ρ=2cosθ有交点,则k的取值范围是( )
A、k≤-
| ||
B、k≥-
| ||
| C、k∈R | ||
| D、k∈R但k≠0 |
观察下列各式:已知a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则归纳猜测a7+b7=( )
| A、26 | B、27 | C、28 | D、29 |
设f(x)=
,若f(0)是f(x)的最小值,则a的取值范围为( )
|
| A、[-1,2] |
| B、[-1,0] |
| C、[1,2] |
| D、[0,2] |
在三角形△ABC所在的平面上有一点P,满足6
=3
+2
,则△PBC与△ABC的面积之比是( )
| AP |
| AB |
| AC |
A、
| ||
B、
| ||
C、
| ||
D、
|
结论为:xn+yn能被x+y整除,令n=1,2,3,4验证结论是否正确,得到此结论成立的条件可以为( )
| A、n∈N* |
| B、n∈N*且n≥3 |
| C、n为正奇数 |
| D、n为正偶数 |