题目内容

12.如图,在四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD,AB∥CD,∠DCB=90°,AB=AD=AA1=2DC,Q为棱CC1上一动点,过直线AQ的平面分别与棱BB1,DD1交于点P,R,则下列结论错误的是(  )
A.对于任意的点Q,都有AP∥QR
B.对于任意的点Q,四边形APQR不可能为平行四边形
C.存在点Q,使得△ARP为等腰直角三角形
D.存在点Q,使得直线BC∥平面APQR

分析 根据面面平行的性质判断A,B,使用假设法判断C,D.

解答 解:(1)∵AB∥CD,AA1∥DD1
∴平面ABB1A1∥平面CDD1C1,∵平面APQR∩平面ABB1A1=AP,平面APQR∩平面CDD1C1=RQ,
∴AP∥QR,故A正确.
(2)∵四边形ABCD是直角梯形,AB∥CD,∴平面BCC1B1与平面ADD1A1不平行,
∵平面APQR∩平面BCC1B1=PQ,平面APQR∩平面ADD1A1=AR,
∴PQ与AR不平行,故四边形APQR不可能为平行四边形,故B正确.
(3)延长CD至M,使得DM=CM,则四边形ABCM是矩形,∴BC∥AM.
当R,Q,M三点共线时,AM?平面APQR,∴BC∥平面APQR,故D正确.
故选C.

点评 本题考查了直棱柱的结构特征,面面平行的性质,线面平行的判定,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网