题目内容
在数列{an}中,a1=1,3anan-1+an-an-1=0(n≥2),数列{bn}满足bn=an•an+1,Tn为数列{bn}的前n项和.
(1)证明:数列{
}是等差数列;
(2)若对任意的n∈N*,不等式λTn<n+12恒成立,求实数λ的取值范围.
(1)证明:数列{
| 1 |
| an |
(2)若对任意的n∈N*,不等式λTn<n+12恒成立,求实数λ的取值范围.
考点:数列与不等式的综合,数列的求和
专题:等差数列与等比数列
分析:(1)由已知得
-
=3,n≥2,
=1,由此能证明数列{
}是首项为1,公差为3的等差数列.
(2)由(1)得an=
,从而bn=an•an+1=
=
(
-
),由此利用裂项求和法推导出λ<3n+
+37,由此能求出实数λ的取值范围.
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| a1 |
| 1 |
| an |
(2)由(1)得an=
| 1 |
| 3n-2 |
| 1 |
| (3n-2)(3n+1) |
| 1 |
| 3 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
| 12 |
| n |
解答:
(1)证明:∵数列{an}中,a1=1,3anan-1+an-an-1=0(n≥2),
∴
-
=3,n≥2,
又
=1,
∴数列{
}是首项为1,公差为3的等差数列.
(2)解:由(1)得
=1+(n-1)×3=3n-2.
∴an=
,
∵bn=an•an+1=
=
(
-
),
∴Tn=
(1-
+
-
+…+
-
)=
(1-
),
∵λTn<n+12恒成立,
∴λ<3n+
+37≤49(当且仅当n=2时取“=”),
解得λ<49.
∴
| 1 |
| an |
| 1 |
| an-1 |
又
| 1 |
| a1 |
∴数列{
| 1 |
| an |
(2)解:由(1)得
| 1 |
| an |
∴an=
| 1 |
| 3n-2 |
∵bn=an•an+1=
| 1 |
| (3n-2)(3n+1) |
| 1 |
| 3 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
∴Tn=
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
| 1 |
| 3 |
| 1 |
| 3n+1 |
∵λTn<n+12恒成立,
∴λ<3n+
| 12 |
| n |
解得λ<49.
点评:本题考查等差数列的证明,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
已知集合A={x| y=
},B={y|y=x2-2x},则A∩B=( )
| x2-4 |
| A、{y|-2≤y≤2} |
| B、{x|x≥-1} |
| C、{y|-1≤y≤2} |
| D、{x|x≥2} |