题目内容
在等比数列{an}中,公比q≠1,等差数列{bn}满足b1=a1=3,b4=a2,b13=a3.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)记cn=
,数列{cn}的前n项和为Sn,证明:Sn<
(n∈N*).
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)记cn=
| 1 |
| (3+bn)log3an |
| 3 |
| 8 |
考点:等差数列与等比数列的综合
专题:等差数列与等比数列
分析:(Ⅰ)由题意
,由此能求出an=3n ,bn=2n+1.
(Ⅱ)由cn=
=
=
(
-
),由此能证明Sn<
.
|
(Ⅱ)由cn=
| 1 |
| (3+bn)log3an |
| 1 |
| 2n(n+2) |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
| 3 |
| 8 |
解答:
(Ⅰ)解:∵等比数列{an}中,公比q≠1,等差数列{bn}满足b1=a1=3,b4=a2,b13=a3,
∴a2=3q,a3=3q2,b4=3+3d,b13=3+12d,
依题意有
,消d,得q2-4q+3=0,
解得q=3或q=1(舍),∴d=2,
∴an=3n ,bn=2n+1.
(Ⅱ)证明:∵cn=
=
=
(
-
),
∴n≥2时,Sn=
[(1-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]
=
(1+
-
-
)<
.
又S1=
<
,
∴Sn<
(n∈N*).
∴a2=3q,a3=3q2,b4=3+3d,b13=3+12d,
依题意有
|
解得q=3或q=1(舍),∴d=2,
∴an=3n ,bn=2n+1.
(Ⅱ)证明:∵cn=
| 1 |
| (3+bn)log3an |
| 1 |
| 2n(n+2) |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
∴n≥2时,Sn=
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 8 |
又S1=
| 1 |
| 6 |
| 3 |
| 8 |
∴Sn<
| 3 |
| 8 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
函数f(x)=2sin(ωx+ϕ)(ω>0,-
<ϕ<
)的部分图象如图所示,则ω,φ的值分别是( )

| π |
| 2 |
| π |
| 2 |
A、2,-
| ||||
B、2,-
| ||||
C、
| ||||
D、
|
3个班分别从5个风景点处选择一处游览,不同的选法种数是( )
| A、53 |
| B、35 |
| C、A53 |
| D、C53 |