题目内容

函数f(x)=x3+bx2+cx是奇函数,函数g(x)=x2+(c-2)x+5是偶函数,则b+c=
 
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:由f(x)=x3+bx2+cx是奇函数,则有f(-x)=-f(x),可得b.由g(x)=x2 +(c-2)x+5是偶函数,故有g(-x)=g(x),可得c.
解答: 解:若f(x)=x3+bx2+cx是奇函数,则有f(-x)=f(x),即 (-x)3+bx2-cx=-(x3+bx2+cx),∴b=0.
由g(x)=x2 +(c-2)x+5是偶函数,故有g(-x)=g(x),故(-x)2 -(c-2)x+5是x2 +(c-2)x+5,∴c=2,
∴b+c=2.
故答案为:2.
点评:本题主要考查奇偶函数的定义.函数的奇偶性的判断,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网