题目内容

6.已知△ABC的外心为O,|AB|=2,|AC|=4,M是BC中点,则$\overrightarrow{AO}•\overrightarrow{AM}$=5.

分析 过点O分别作OE⊥AB于E,OF⊥AC于F,可得E、F分别是AB、AC的中点.根据Rt△AOE中余弦的定义,分别求出$\overrightarrow{AB}$•$\overrightarrow{AO}$=2,$\overrightarrow{AC}$•$\overrightarrow{AO}$=8,代入计算即可得出.

解答 解:过点O分别作OE⊥AB于E,OF⊥AC于F,则E、F分别是AB、AC的中点
可得Rt△AEO中,cos∠OAE=$\frac{|\overrightarrow{AE|}}{|\overrightarrow{AO}|}$=$\frac{|\overrightarrow{AB}|}{2|\overrightarrow{AO}|}$
∴$\overrightarrow{AB}$•$\overrightarrow{AO}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AO}$|•=$\frac{|\overrightarrow{AB}|}{2|\overrightarrow{AO}|}$=$\frac{1}{2}$|$\overrightarrow{AB}$|2=2,
同理可得$\overrightarrow{AC}$•$\overrightarrow{AO}$=$\frac{1}{2}$|$\overrightarrow{AC}$|2=8
∵M是BC边的中点,可得$\overrightarrow{AM}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
∴$\overrightarrow{AO}•\overrightarrow{AM}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\overrightarrow{AO}$=$\frac{1}{2}$($\overrightarrow{AB}$•$\overrightarrow{AO}$+$\overrightarrow{AC}$•$\overrightarrow{AO}$)=$\frac{1}{2}$×10=5,
故答案为:5

点评 本题为向量数量积的运算,数形结合并熟练应用数量积的定义是解决问题的关键,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网