题目内容

已知数列{an}是各项均为正数的等比数列,且a1+a2=2(
1
a1
+
1
a2
),a3+a4=32(
1
a3
+
1
a4
)

(1)求数列{an}的通项公式;
(2)设bn=an2+log2an,求数列{bn}的前n项和Tn
考点:数列的求和,等比数列的通项公式
专题:等差数列与等比数列
分析:(Ⅰ)设出等比数列的公比为q,根据等比数列的通项公式化简已知的两个等式,得到关于首项和公比的方程组,根据题意求出方程组的解,得首项和公比的值,再写出等比数列的通项公式;
(Ⅱ)把(Ⅰ)求出的通项公式代入bn=an2+log2an中,化简得到数列{bn}的通项公式,分别根据等比数列及等差数列的前n项和的公式即可求出Tn
解答: 解:(Ⅰ)设等比数列{an}的公比为q,且a1>0,q>0,则an=a1qn-1
由已知得:
a1+a1q=2(
1
a1
+
1
a1q
)
a1q2+a1q3=32(
1
a1q2
+
1
a1q3
)
,化简得
a12q=2
a12q5=32

又∵a1>0,q>0,解得a1=1,q=2,
∴an=2n-1
(Ⅱ)由(Ⅰ)知bn=an2+log2an=4n-1+(n-1),
∴Tn=(1+4+42+…+4n-1)+(1+2+3+…+n-1)
=
1-4n
1-4
+
n(n-1)
2

=
4n-1
3
+
n(n-1)
2
点评:本题考查了学生灵活运用等比数列的通项公式及前n项和的公式化简求值,灵活运用等差数列的前n项和的公式化简求值,是一道中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网