题目内容

1.在△ABC中,a,b,c分别为角A,B,C的对边,满足sinB(sinB+sinA)+(cosC-cosA)(cosC+cosA)=0,S△ABC=4$\sqrt{3}$,则ab=16.

分析 对条件进行化简,结合正弦定理得出三边a,b,c的关系,利用余弦定理求出C.代入面积公式得出ab.

解答 解:∵sinB(sinB+sinA)+(cosC-cosA)(cosC+cosA)=0,
∴sin2B+sinAsinB+cos2C-cos2A=0,∴sin2B+sinAsinB+1-sin2C-(1-sin2A)=0,∴sin2A+sin2B-sin2C+sinAsinB=0.
∴a2+b2-c2=-ab,∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=-$\frac{1}{2}$.∴sinC=$\frac{\sqrt{3}}{2}$.
∵S△ABC=$\frac{1}{2}absinC$=4$\sqrt{3}$,∴ab=16.
故答案为16.

点评 本题考查了三角函数的恒等变换,及利用正余弦定理解三角形.属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网