ÌâÄ¿ÄÚÈÝ
2£®Ä³ÅëÈÎѧԺΪÁ˺ëÑïÖйú´«Í³µÄÒûʳÎÄ»¯£¬¾Ù°ìÁËÒ»³¡ÓÉÔÚУѧÉú²Î¼ÓµÄ³øÒÕ´óÈü£¬×éί»áΪÁËÁ˽Ȿ´Î´óÈü²ÎÈüѧÉúµÄ³É¼¨Çé¿ö£¬´Ó²ÎÈüѧÉúÖгéÈ¡ÁËnÃûѧÉúµÄ³É¼¨£¨Âú·Ö100·Ö£©×÷ΪÑù±¾£¬½«ËùµÃÊý¾¹ý·ÖÎöÕûÀíºó»³öÁËÆÀÂÛ·Ö²¼Ö±·½Í¼ºÍ¾¥Ò¶Í¼£¬ÆäÖо¥Ò¶Í¼ÊÕµ½ÎÛȾ£¬Çë¾Ý´Ë½â´ðÏÂÁÐÎÊÌ⣺£¨1£©ÇóƵÂÊ·Ö²¼Ö±·½Í¼ÖÐa£¬bµÄÖµ²¢¹À¼Æ´Ë´Î²Î¼Ó³øÒÕ´óÈüѧÉúµÄƽ¾ù³É¼¨£»
£¨2£©¹æ¶¨´óÈü³É¼¨ÔÚ[80£¬90£©µÄѧÉúΪ³ø°Ô£¬ÔÚ[90£¬100]µÄѧÉúΪ³øÉñ£¬ÏÖ´Ó±»³ÆÎª³ø°Ô¡¢³øÉñµÄѧÉúÖÐËæ»ú³éÈ¡3ÈË£¬ÆäÖгøÉñÈËÊýΪX£¬ÇóXµÄ·Ö²¼ÁÐÓëÊýѧÆÚÍû£®
·ÖÎö £¨1£©Ê×Ïȸù¾ÝµÚÒ»×éÏà¹ØµÄÊý¾Ý¿ÉÇóµÃnµÄÖµ£¬È»ºó¸ù¾ÝƵÂÊ=¾ØÐÎÃæ»ý£¬ÇóµÃa£¬ËùÓеÄÃæ»ýÖ®ºÍΪ1£¬¿ÉÇóµÃb£¬
¸ù¾Ýƽ¾ùÊý=ƵÂÊ·Ö²¼Ö±·½Í¼ÖÐÿ¸ö¾ØÐεÄÃæ»ý³ËÒÔС¾ØÐεױßÖеãµÄºá×ø±êÖ®ºÍ£»
£¨2£©¸ù¾ÝÌõ¼þÇó³ö³ø°ÔÓë³ýÉñµÄÈËÊý£¬È»ºóÀûÓùŵä¸ÅÂʹ«Ê½¼ÆËã½á¹û£®
½â´ð ½â£ºÓÉÌâÒâ¿ÉÖªÑù±¾ÈÝÁ¿n=$\frac{5}{0.0125¡Á10}$=40£¬
¡àa=$\frac{3}{40¡Á10}$=0.0075£¬
ÓÉËùÓÐС¾ØÐεÄÃæ»ý×ܺÍΪ1£¬
Ôò£º£¨0.0075+0.0125+0.0150+b+0.0450£©¡Á10=1£¬
¡àb=0.0200£¬
²Î¼Ó³øÒÕ´óÈüѧÉúµÄƽ¾ù³É¼¨£º0.55¡Á0.125+65¡Á0.2+75¡Á0.45+85¡Á0.15+95¡Á0.075=73.5£¬
£¨2£©ÓÉÌâÒâ¿ÉÖª£º³ø°ÔÓÉ0.0150¡Á10¡Á40=6ÈË£¬³øÉñÓÉ0.0075¡Á10¡Á40=3£¬
XµÄȡֵΪ£º0£¬1£¬2£¬3£¬
P£¨X=0£©=$\frac{{C}_{6}^{3}}{{C}_{9}^{3}}$=$\frac{5}{21}$£¬
P£¨X=1£©=$\frac{{C}_{6}^{2}•{C}_{3}^{1}}{{C}_{9}^{3}}$=$\frac{15}{28}$£¬
P£¨X=2£©=$\frac{{C}_{6}^{1}•{C}_{3}^{2}}{{C}_{9}^{3}}$=$\frac{3}{14}$£¬
P£¨X=3£©=$\frac{{C}_{3}^{3}}{{C}_{9}^{3}}$=$\frac{1}{84}$£®
XµÄ·Ö²¼ÁУº
| X | 0 | 1 | 2 | 3 |
| P | $\frac{5}{21}$ | $\frac{15}{28}$ | $\frac{3}{14}$ | $\frac{1}{84}$ |
¡àÊýѧÆÚÍûE£¨X£©=1£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²ìƵÂÊ·Ö²¼Ö±·½Í¼¡¢¾¥Ò¶Í¼¡¢¹Åµä¸ÅÐ͵Ļù´¡ÖªÊ¶£¬ÒâÔÚ¿¼²ìÊý¾Ý´¦ÀíÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
¸Ã±íÓÉÈô¸ÉÐÐÊý×Ö×é³É£¬µÚÒ»Ðй²ÓÐ2016¸öÊý×Ö£¬´ÓµÚ¶þÐÐÆð£¬Ã¿Ò»ÐÐÖеÄÊý×Ö¾ùµÈÓÚÆä¡°¼çÉÏ¡±Á½ÊýÖ®ºÍ£¬±íÖÐ×îºóÒ»ÐнöÓÐÒ»¸öÊý£¬ÔòÕâ¸öÊýΪ£¨¡¡¡¡£©
| A£® | 2016¡Á22015 | B£® | 2016¡Á22014 | C£® | 2017¡Á22015 | D£® | 2017¡Á22014 |
| A£® | -$\frac{1}{2}$ | B£® | $\frac{1}{2}$ | C£® | -$\frac{\sqrt{3}}{2}$ | D£® | $\frac{\sqrt{3}}{2}$ |
| A£® | ³¤¶ÈÏàµÈµÄÏòÁ¿½ÐÏàµÈÏòÁ¿ | |
| B£® | ÁãÏòÁ¿µÄ³¤¶ÈΪÁã | |
| C£® | ¹²ÏßÏòÁ¿ÊÇÔÚÒ»ÌõÖ±ÏßÉϵÄÏòÁ¿ | |
| D£® | ƽÐÐÏòÁ¿¾ÍÊÇÏòÁ¿ËùÔÚµÄÖ±Ï߯½ÐеÄÏòÁ¿ |
| A£® | $\frac{\sqrt{6}-\sqrt{2}}{2}$ | B£® | $\frac{\sqrt{6}+\sqrt{2}}{2}$ | C£® | $\frac{2+\sqrt{3}}{4}$ | D£® | $\frac{2-\sqrt{3}}{4}$ |