题目内容
13.设x,y满足约束条件$\left\{{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}}\right.$,则目标函数z=2x+3y的最大值为( )| A. | 4 | B. | 6 | C. | 16 | D. | 26 |
分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.
解答
解:作出不等式对应的平面区域(阴影部分),
由z=2x+3y,得y=$-\frac{2}{3}x+\frac{z}{3}$,
平移直线y=$-\frac{2}{3}x+\frac{z}{3}$,由图象可知当直线y=$-\frac{2}{3}x+\frac{z}{3}$经过点B时,直线y=$-\frac{2}{3}x+\frac{z}{3}$的截距最大,此时z最大.
由$\left\{\begin{array}{l}{3x-y-6=0}\\{x-y+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=6}\end{array}\right.$,
即B(4,6).
此时z的最大值为z=2×4+3×6=26,
故选:D.
点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.
练习册系列答案
相关题目
3.当实数x,y满足$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$时,1≤ax+y≤4恒成立,则实数a的取值范围( )
| A. | [1,$\frac{3}{2}$] | B. | [-1,2] | C. | [-2,3] | D. | [1,$\frac{3}{2}$) |