题目内容

3.当实数x,y满足$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$时,1≤ax+y≤4恒成立,则实数a的取值范围(  )
A.[1,$\frac{3}{2}$]B.[-1,2]C.[-2,3]D.[1,$\frac{3}{2}$)

分析 由约束条件作出可行域,再由1≤ax+y≤4恒成立,结合可行域内特殊点A,B,C的坐标满足不等式列不等式组,求解不等式组得实数a的取值范围.

解答 解:由约束条件作可行域如图,
联立 $\left\{\begin{array}{l}{x=1}\\{x+2y-4=0}\end{array}\right.$,解得C(1,$\frac{3}{2}$).
联立 $\left\{\begin{array}{l}{x-y-1=0}\\{x+2y-4=0}\end{array}\right.$,解得B(2,1).
在x-y-1=0中取y=0得A(1,0).
要使1≤ax+y≤4恒成立,
则 $\left\{\begin{array}{l}{a-1≥0}\\{a+\frac{3}{2}-1≥0}\\{a-4≤0}\\{2a+1-4≤0}\end{array}\right.$,解得:1≤a≤$\frac{3}{2}$.
∴实数a的取值范围是[1,$\frac{3}{2}$].
故选:A.

点评 本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网