题目内容
3.已知函数f(x)=ex-ax(a为常数)且f'(0)=-1,(1)求a的值及函数f(x)的极值;
(2)证明:当x>0时,x2<ex.
分析 (1)求函数的导数,利用f'(0)=-1即可求a的值及函数f(x)的极值;
(2)构造函数g(x)=ex-x2,求函数的导数,研究是的单调性和极值即可证明当x>0时,x2<ex
解答 解:(1)因为f(x)=ex-ax,
所以f′(x)=ex-a.
又f′(0)=1-a=-1,得a=2.
所以f(x)=ex-2x,f′(x)=ex-2.
令f′(x)=0,得x=ln2.当x<ln2时,f′(x)<0,f(x)单调递减;
当x>ln2时,f′(x)>0,f(x)单调递增.
所以当x=ln2时,f(x)取得极小值,且极小值为f(ln2)=eln2-2ln2=2-ln4,f(x)无极大值.
(2)证明:令g(x)=ex-x2,则g′(x)=ex-2x.
由(1)得g′(x)=f(x)≥f(ln2)>0,
故g(x)在R上单调递增,又g(0)=1>0,
因此,当x>0时,g(x)>g(0)>0,
即x2<ex.
点评 本题主要考查导数的综合应用,利用导数研究函数的单调性和极值是证明不等式的常用方法.
练习册系列答案
相关题目
18.已知随机变量X的分布列为$P(X=k)=\frac{a}{2^k},k=1,2,…10$,则P(2<X≤4)=( )
| A. | $\frac{16}{341}$ | B. | $\frac{32}{341}$ | C. | $\frac{64}{341}$ | D. | $\frac{128}{341}$ |
8.已知M为平面内一动点,设命题甲:存在两个定点F1,F2使得||MF1|-|MF2||是定值,命题乙:M的轨迹是双曲线,则命题甲是命题乙的( )条件.
| A. | 充分不必要 | B. | 必要不充分 | ||
| C. | 充要 | D. | 既不充分也不必要 |
15.如果关于x的不等式(a2-4)x2+(a+2)x-1≥0的解集是空集,则实数a的取值范围是( )
| A. | $-2≤a<\frac{6}{5}$ | B. | $-2≤a≤\frac{5}{6}$ | C. | -2≤a<1 | D. | -2≤a≤1 |
12.某公司近年来产品研发费用支出x万元与公司所获得利润y之间有如下统计数据:
(1)请根据表中提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\overline{b}$x+$\widehat{a}$
(2)试根据(1)中求出的线性回归方程,预测该公司产品研发费用支出为10万元时所获得的利润.
参考公式:用最小二乘法求现象回归方程$\widehat{y}$=$\overline{b}$x+$\widehat{a}$
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$.
| x | 2 | 3 | 4 | 5 |
| y | 18 | 27 | 32 | 35 |
(2)试根据(1)中求出的线性回归方程,预测该公司产品研发费用支出为10万元时所获得的利润.
参考公式:用最小二乘法求现象回归方程$\widehat{y}$=$\overline{b}$x+$\widehat{a}$
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$.