题目内容
10.在复平面内,复数z=$\frac{i}{1+2i}$的共轭复数对应的点位于第四象限.分析 利用复数代数形式的乘除运算化简,求出复数z=$\frac{i}{1+2i}$的共轭复数对应的点的坐标得答案.
解答 解:∵z=$\frac{i}{1+2i}$=$\frac{i(1-2i)}{(1+2i)(1-2i)}=\frac{2}{5}+\frac{1}{5}i$,
∴$\overline{z}=\frac{2}{5}-\frac{1}{5}i$,
∴复数z=$\frac{i}{1+2i}$的共轭复数对应的点的坐标为($\frac{2}{5},-\frac{1}{5}$),位于第四象限.
故答案为:四.
点评 本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.
练习册系列答案
相关题目
20.已知向量$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角为120°,且$|\overrightarrow{AB}|=2$,$|\overrightarrow{AC}|=4$,若$\overrightarrow{AP}=\overrightarrow{AB}+λ\overrightarrow{AC}$且$\overrightarrow{AP}⊥\overrightarrow{BC}$,则实数λ的值为( )
| A. | $\frac{4}{5}$ | B. | $-\frac{4}{5}$ | C. | $\frac{2}{5}$ | D. | $-\frac{2}{5}$ |
18.若函数f(x)满足:①对定义域内任意x,都有f(x)+f(-x)=0,②对定义域内任意x1,x2,且x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,则称函数f(x)为“优美函数”.下列函数中是“优美函数”的是( )
| A. | f(x)=$\frac{-{e}^{x}+1}{1+{e}^{x}}$ | |
| B. | f(x)=ln(1+x)+ln$\frac{1}{-x+1}$ | |
| C. | f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x-1,x>0}\\{0,x=0}\\{-{x}^{2}+2x+1,x<0}\end{array}\right.$ | |
| D. | f(x)=tan x |
5.已知函数f(x)=$\frac{{x}^{2}+2x+1}{{x}^{2}+1}$,若f(x0)=2016,则f(-x0)=( )
| A. | -2013 | B. | -2014 | C. | -2015 | D. | -2016 |
15.复数$\frac{-2+i}{1+2i}$=( )
| A. | -1 | B. | 1 | C. | -i | D. | i |
2.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象的一个最高点坐标为(1,2),相邻的对称轴与对称中心间的距离为2,则下列结论正确的是( )
| A. | f(x)的图象关于(2,0)中心对称 | B. | f(x)的图象关于直线x=3对称 | ||
| C. | f(x)在区间(2,3)上单调递增 | D. | f(2017)=2 |