题目内容
15.在正整数数列中,由1开始依次按如下规则将某些数染成红色.先染1,再染2个偶数2,4;再染4后面最邻近的3个连续奇数5,7,9;再染9后面最邻近的4个连续偶数10,12,14,16;再染16后面最邻近的5个连续奇数17,19,21,23,25.按此规律一直染下去,得到一红色子数列1,2,4,5,7,9,10,12,14,16,17,….则在这个红色子数列中,由1开始的第60个数是( )| A. | 103 | B. | 105 | C. | 107 | D. | 109 |
分析 根据题意知,每次涂成红色的数字成等差数列,并且第n此染色时所染的第一个数是(n-1)2+1,最后染色的数是n2,可以求出60个数是在第11次染色的第5个数,因此可求得结果.
解答 解:第1个为1
第2,3个为2~4的偶数,
第4,5,6个为5~9的奇数,
第7~10个为10~16的偶数,
第11~15个为17~25的奇数,
…
第$\frac{n(n-1)}{2}$,…$\frac{n(n+1)}{2}$,个为(n-1)2+1~n2 的 奇数或偶数,
而60=$\frac{11×10}{2}$+5,
∴第60个数是(11-1)2+1+2(5-1)=109
故选D.
点评 考查数列的性质和应用,解题是注意公式的灵活应用,此题是以一个数阵形式呈现的,考查观察、分析、归纳、解决问题的能力,属中档题.
练习册系列答案
相关题目
3.如果a>b>0,那么下列不等式成立的是( )
| A. | $\frac{1}{a}$>$\frac{1}{b}$ | B. | -$\frac{1}{a}$<-$\frac{1}{b}$ | C. | ab<b2 | D. | ab<a2 |
20.
如图所示,三视图的几何体是( )
| A. | 六棱台 | B. | 六棱柱 | C. | 六棱锥 | D. | 六边形 |
7.直线ρcos θ+2ρsin θ=1不经过( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |