ÌâÄ¿ÄÚÈÝ
16£®£¨1£©Ëþ¸ß£¨¼´Ïß¶ÎPHµÄ³¤£¬¾«È·µ½0.1Ã×£©£»
£¨2£©ËþÉíµÄÇãб¶È£¨¼´POÓëPHµÄ¼Ð½Ç£¬¾«È·µ½0.1¡ã£©£®
·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉÖª£º¡÷PAH£¬¡÷PBH¾ùΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬AH=BH=x£¬¡ÏHAB=27¡ã£¬AB=33.6£¬¼´¿ÉÇóµÃx=$\frac{\frac{AB}{2}}{cos¡ÏHAB}$=$\frac{16.8}{cos27¡ã}$=18.86£»
£¨2£©¡ÏOBH=180¡ã-120¡ã-2¡Á27¡ã=6¡ã£¬BH=18.86£¬ÓÉÕýÏÒ¶¨Àí¿ÉÖª£º$\frac{OH}{sin¡ÏOBH}$=$\frac{BH}{sin¡ÏBOH}$£¬OH=$\frac{18.86¡Ásin6¡ã}{sin120¡ã}$=2.28£¬ÔòÇãб½Ç¡ÏOPH=arctan$\frac{OH}{PH}$=arctan$\frac{2.28}{18.86}$=6.89¡ã£®
½â´ð ½â£º£¨1£©ÉèËþ¸ßPH=x£¬ÓÉÌâÒâÖª£¬¡ÏHAP=45¡ã£¬¡ÏHBP=45¡ã£¬
¡à¡÷PAH£¬¡÷PBH¾ùΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬
¡àAH=BH=x¡£¨2·Ö£©![]()
ÔÚ¡÷AHBÖУ¬AH=BH=x£¬¡ÏHAB=27¡ã£¬AB=33.6£¬
¡àx=$\frac{\frac{AB}{2}}{cos¡ÏHAB}$=$\frac{16.8}{cos27¡ã}$=18.86¡£¨6·Ö£©
£¨2£©ÔÚ¡÷BOHÖУ¬¡ÏBOH=120¡ã£¬
¡à¡ÏOBH=180¡ã-120¡ã-2¡Á27¡ã=6¡ã£¬BH=18.9£¬
ÓÉ$\frac{OH}{sin¡ÏOBH}$=$\frac{BH}{sin¡ÏBOH}$£¬
µÃOH=$\frac{18.86¡Ásin6¡ã}{sin120¡ã}$=2.28£¬¡£¨10·Ö£©
¡à¡ÏOPH=arctan$\frac{OH}{PH}$=arctan$\frac{2.28}{18.86}$¡Ö6.9¡ã£¬¡£¨13·Ö£©
¡àËþ¸ß18.9Ã×£¬ËþµÄÇãб¶ÈΪ6.9¡ã£® ¡£¨14·Ö£©
µãÆÀ ±¾Ì⿼²é½âÈý½ÇÐεÄ×ÛºÏÓ¦Ó㬿¼²éÕýÏÒ¶¨Àí£¬·´Èý½Çº¯ÊýµÄÓ¦Ó㬿¼²éÊýÐνáºÏ˼Ï룬ÊôÓÚÖеµÌ⣮
| A£® | $y=\left\{{\begin{array}{l}{2-x£¬x£¼1}\\{x£¬x£¾1}\end{array}}\right.$ | B£® | $y=\left\{{\begin{array}{l}{2-x£¬x£¾1}\\{x£¬x¡Ü1}\end{array}}\right.$ | C£® | $y=\left\{{\begin{array}{l}{x£¬x£¼1}\\{2-x£¬x¡Ý1}\end{array}}\right.$ | D£® | $y=\left\{{\begin{array}{l}{2-x£¬x£¼1}\\{x£¬x¡Ý1}\end{array}}\right.$ |
| A£® | $4\sqrt{3}¦Ð$ | B£® | $\frac{16¦Ð}{3}$ | C£® | 16¦Ð | D£® | $\frac{32¦Ð}{3}$ |