题目内容

17.某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.
(1)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;
(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到右表中数据,根据表中的数据,
年级名次
是否近视
1~50951~1000
近视4132
不近视918
能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50的学生人数为X,求X的分布列和数学期望.
附:
P(K2≥k)0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

分析 (1)设各组的频率为fi(i=1,2,3,4,5,6),由已知得后四组频数依次为27,24,21,18,由此能求出估计全年级视力在5.0以下的人数.
(2)求出K2,由此能求出在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系.
(Ⅲ)依题意9人中年级名次在1~50名和951~1000名分别有3人和6人,X可取0、1、2、3,分别求出相应在的概率,由此能求出X的分布列和X的数学期望.

解答 解:(1)设各组的频率为fi(i=1,2,3,4,5,6),
由图可知,第一组有3人,第二组7人,第三组27人,…(1分)
因为后四组的频数成等差数列,
所以后四组频数依次为27,24,21,18…(2分)
所以视力在5.0以下的频率为:$\frac{3+7+27+24+21}{100}$=0.82,
故全年级视力在5.0以下的人数约为$1000×\frac{82}{100}=820$…(3分)
(2)${k^2}=\frac{{100×{{(41×18-32×9)}^2}}}{50×50×73×27}=\frac{300}{73}≈4.110>3.841$
因此在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系.…(6分)
(Ⅲ)依题意9人中年级名次在1~50名和951~1000名分别有3人和6人,X可取0、1、2、3,…(7分)
$P(X=0)=\frac{C_6^3}{C_9^3}=\frac{20}{84}$,
$P(X=1)=\frac{C_6^2C_3^1}{C_9^3}=\frac{45}{84}$,
$P(X=2)=\frac{C_6^1C_3^2}{C_9^3}=\frac{18}{84}$,
$P(X=3)=\frac{C_3^3}{C_9^3}=\frac{1}{84}$,
∴X的分布列为:

X0123
P$\frac{20}{84}$$\frac{45}{84}$$\frac{18}{84}$$\frac{1}{84}$
…(11分)
X的数学期望$E(X)=0×\frac{20}{84}+1×\frac{45}{84}+2×\frac{18}{84}+3×\frac{1}{84}=1$…(12分)

点评 本题考查频率分布直方图的应用,考查离散型机随机变量概率分布列、数学期望的求法,是中档题,解题时要认真审题,注意排列组合的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网