题目内容
9.已知向量$\overrightarrow{a}$=(-4,x),$\overrightarrow{b}$=(5,2),若$\overrightarrow{a}$⊥$\overrightarrow{b}$.则x=10.分析 令$\overrightarrow{a}•\overrightarrow{b}$=0解出.
解答 解:∵$\overrightarrow{a}$⊥$\overrightarrow{b}$,∴$\overrightarrow{a}$•$\overrightarrow{b}$=-20+2x=0,∴x=10.
故答案为10.
点评 本题考查了向量垂直与数量积的关系,属于基础题.
练习册系列答案
相关题目
17.若|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{3}$,则|2$\overrightarrow{a}$$-\overrightarrow{b}$|=( )
| A. | 2 | B. | 2$\sqrt{3}$ | C. | 0 | D. | $\sqrt{2}$ |
14.已知R上的可导偶函数f(x)满足f(x+2)=f(x-2),又f′(1)=5,则f′(15)的值为( )
| A. | 5 | B. | -5 | C. | 0 | D. | ±5 |
1.函数f(x)=x+$\frac{{a}^{2}}{x}$(a>0)的减区间为( )
| A. | (-a,a) | B. | (-a,0),(0,a) | C. | (-a,0)∪(0,a) | D. | 以上皆非 |