题目内容

设{an}是等差数列,Sn是{an}的前n项和,已知a7=-2,S5=30.
(1)求an
(2)若数列{bn}满足bn=(12-an
210-an
,Tn是{bn}的前n项和,求证:
Tn
bn
<2(n∈N*).
考点:数列的求和,等差数列的通项公式
专题:等差数列与等比数列
分析:(1)由已知得
a1+6d=-2
5a1+10d=30
,由此能求出an=-2n+12.
(2)由bn=(12-an
210-an
=2n•2n-1=n•2n,利用错位相减法能求出Tn=(n-1)•2n+1+2,由此能证明
Tn
bn
=
(n-1)•2n+1+2
n•2n
=2-
2n+1-2
n•2n+1
<2.
解答: 解:(1)∵{an}是等差数列,Sn是{an}的前n项和,已知a7=-2,S5=30,
a1+6d=-2
5a1+10d=30

a1=10,d=-2,
∴an=10+(n-1)×(-2)=-2n+12.
(2)bn=(12-an
210-an
=2n•2n-1=n•2n
Tn=1×2+2×22+3×23+…+n×2n,①
2Tn=1×22+2×23+3×24+…+n×2n+1,②
①-2,得:-Tn=2+22+23+…+2n-n×2n+1
=
2(1-2n)
1-2
-n×2n+1
=(1-n)•2n+1-2,
∴Tn=(n-1)•2n+1+2,
Tn
bn
=
(n-1)•2n+1+2
n•2n
=2-
2n+1-2
n•2n+1
<2.
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网