题目内容

13.已知函数f(x)=|2x-1|+ax-1(a∈R).
(1)当a=1时,解不等式f(x)≥0;
(2)若不等式f(a)+f(-a)≤0恒成立,求实数a的取值范围.

分析 (1)通过讨论x的范围,得到关于x的不等式组,解出即可;
(2)问题转化为|2a-1|+|2a+1|≤2恒成立,通过讨论a的范围,得到关于a的不等式组,解出即可.

解答 解:(1)a=1时,f(x)=|2x-1|+x-1,
由不等式f(x)≥0可化为:
$\left\{\begin{array}{l}{x≥\frac{1}{2}}\\{2x-1+x-1≥0}\end{array}\right.$或$\left\{\begin{array}{l}{x<\frac{1}{2}}\\{1-2x+x-1≥0}\end{array}\right.$,
解得:x≥$\frac{2}{3}$或x≤0,
故不等式的解集是(-∞,0]∪[$\frac{2}{3}$,+∞);
(2)若不等式f(a)+f(-a)≤0恒成立,
即|2a-1|+a2-1+|2a+1|-a2-1≤0恒成立,
即|2a-1|+|2a+1|≤2恒成立,
即$\left\{\begin{array}{l}{a≥\frac{1}{2}}\\{2a-1+2a+1≤2}\end{array}\right.$或$\left\{\begin{array}{l}{-\frac{1}{2}<a<\frac{1}{2}}\\{1-2a+2a+1≤2}\end{array}\right.$或$\left\{\begin{array}{l}{a≤-\frac{1}{2}}\\{1-2a-2a-1≤2}\end{array}\right.$,
解得:-$\frac{1}{2}$≤a≤$\frac{1}{2}$.

点评 本题考查了解绝对值不等式问题,考查分类讨论思想,转化思想,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网