ÌâÄ¿ÄÚÈÝ
7£®ÒÑÖªº¯Êýf£¨x£©=sin£¨2x+¦Õ£©0£¼¦Õ£¼$\frac{¦Ð}{2}$£©µÄͼÏóµÄÒ»¸ö¶Ô³ÆÖÐÐÄΪ£¨$\frac{3¦Ð}{8}$£¬0£©£¬Ôòº¯Êýf£¨x£©µÄµ¥µ÷µÝ¼õÇø¼äÊÇ£¨¡¡¡¡£©| A£® | [2k¦Ð-$\frac{3¦Ð}{8}$£¬2k¦Ð+$\frac{¦Ð}{8}$]£¨k¡ÊZ£© | B£® | [2k¦Ð+$\frac{¦Ð}{8}$£¬2k¦Ð+$\frac{5¦Ð}{8}$]£¨k¡ÊZ£© | ||
| C£® | [k¦Ð-$\frac{3¦Ð}{8}$£¬k¦Ð+$\frac{¦Ð}{8}$]£¨k¡ÊZ£© | D£® | [k¦Ð+$\frac{¦Ð}{8}$£¬k¦Ð+$\frac{5¦Ð}{8}$]£¨k¡ÊZ£© |
·ÖÎö ÓÉÌâÒâºÍº¯ÊýµÄ¶Ô³ÆÐÔ´ý¶¨ÏµÊý¿ÉµÃº¯Êý½âÎöʽ£¬¿ÉµÃµ¥µ÷µÝ¼õÇø¼ä£®
½â´ð ½â£ºÓÉÌâÒâ¿ÉµÃsin£¨2¡Á$\frac{3¦Ð}{8}$+¦Õ£©=0£¬¹Ê2¡Á$\frac{3¦Ð}{8}$+¦Õ=k¦Ð£¬
½âµÃ¦Õ=k¦Ð-$\frac{3¦Ð}{4}$£¬k¡ÊZ£¬ÓÉ0£¼¦Õ£¼$\frac{¦Ð}{2}$¿ÉµÃ¦Õ=$\frac{¦Ð}{4}$£¬
¡àf£¨x£©=sin£¨2x+$\frac{¦Ð}{4}$£©£¬
ÓÉ2k¦Ð+$\frac{¦Ð}{2}$¡Ü2x+$\frac{¦Ð}{4}$¡Ü2k¦Ð+$\frac{3¦Ð}{2}$¿ÉµÃk¦Ð+$\frac{¦Ð}{8}$¡Üx¡Ük¦Ð+$\frac{5¦Ð}{8}$£¬
¡àº¯Êýf£¨x£©µÄµ¥µòµÝ¼õÇø¼äΪ[k¦Ð+$\frac{¦Ð}{8}$£¬k¦Ð+$\frac{5¦Ð}{8}$]£¬k¡ÊZ£®
¹ÊÑ¡£ºD£®
µãÆÀ ±¾Ì⿼²éÈý½Çº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬Éæ¼°Èý½Çº¯ÊýµÄµ¥µ÷ÐÔ£¬Êô»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
17£®Ä³¹¤³§ÓÐÁ½ÌõÏ໥²»Ó°ÏìµÄÉú²úÏß·Ö±ðÉú²ú¼×¡¢ÒÒÁ½ÖÖ²úÆ·£¬²úÆ·³ö³§Ç°ÐèÒª¶Ô²úÆ·½øÐÐÐÔÄܼì²â£®¼ì²âµÃ·ÖµÍÓÚ80µÄΪ²»ºÏ¸ñÆ·£¬Ö»Äܱ¨·Ï»ØÊÕ£»µÃ·Ö²»µÍÓÚ80µÄΪºÏ¸ñÆ·£¬¿ÉÒÔ³ö³§£®ÏÖËæ»ú³éÈ¡ÕâÁ½ÖÖ²úÆ·¸÷60¼þ½øÐмì²â£¬¼ì²â½á¹ûͳ¼ÆÈç±í£º
£¨¢ñ£©ÊÔ·Ö±ð¹À¼Æ²úÆ·¼×£¬ÒÒÏÂÉú²úÏßʱΪºÏ¸ñÆ·µÄ¸ÅÂÊ£»
£¨¢ò£©Éú²úÒ»¼þ²úÆ·¼×£¬ÈôÊǺϸñÆ·¿ÉÓ¯Àû100Ôª£¬ÈôÊDz»ºÏ¸ñÆ·Ôò¿÷Ëð20Ôª£»Éú²úÒ»¼þ²úÆ·ÒÒ£¬ÈôÊǺϸñÆ·¿ÉÓ¯Àû90Ôª£¬ÈôÊDz»ºÏ¸ñÆ·Ôò¿÷Ëð15Ôª£®ÔÚ£¨¢ñ£©µÄǰÌáÏ£º
£¨1£©¼ÇXΪÉú²ú1¼þ¼×ºÍ1¼þÒÒËùµÃµÄ×ÜÀûÈó£¬ÇóËæ»ú±äÁ¿XµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£»
£¨2£©ÇóÉú²ú5¼þÒÒËù»ñµÃµÄÀûÈó²»ÉÙÓÚ300ÔªµÄ¸ÅÂÊ£®
| µÃ·Ö | [60£¬70£© | [70£¬80£© | [80£¬90£© | [90£¬100] |
| ¼× | 5 | 10 | 34 | 11 |
| ÒÒ | 8 | 12 | 31 | 9 |
£¨¢ò£©Éú²úÒ»¼þ²úÆ·¼×£¬ÈôÊǺϸñÆ·¿ÉÓ¯Àû100Ôª£¬ÈôÊDz»ºÏ¸ñÆ·Ôò¿÷Ëð20Ôª£»Éú²úÒ»¼þ²úÆ·ÒÒ£¬ÈôÊǺϸñÆ·¿ÉÓ¯Àû90Ôª£¬ÈôÊDz»ºÏ¸ñÆ·Ôò¿÷Ëð15Ôª£®ÔÚ£¨¢ñ£©µÄǰÌáÏ£º
£¨1£©¼ÇXΪÉú²ú1¼þ¼×ºÍ1¼þÒÒËùµÃµÄ×ÜÀûÈó£¬ÇóËæ»ú±äÁ¿XµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£»
£¨2£©ÇóÉú²ú5¼þÒÒËù»ñµÃµÄÀûÈó²»ÉÙÓÚ300ÔªµÄ¸ÅÂÊ£®
18£®ÒÑÖªº¯Êýf£¨x£©=2sinxcosx+2cos2x+3£¬Ôòº¯Êýf£¨x£©µÄ×î´óÖµÊÇ£¨¡¡¡¡£©
| A£® | 4+$\sqrt{2}$ | B£® | 4-$\sqrt{2}$ | C£® | 4 | D£® | 5 |
2£®ÒÑÖªÃüÌâp£º?x¡ÊN*£¬£¨$\frac{1}{2}$£©x¡Ý£¨$\frac{1}{3}$£©x£¬ÃüÌâq£º?x¡ÊN*£¬2x+21-x=2$\sqrt{2}$£¬ÔòÏÂÁÐÃüÌâÖÐÎªÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
| A£® | p¡Äq | B£® | £¨©Vp£©¡Äq | C£® | p¡Ä£¨©Vq£© | D£® | £¨©Vp£©¡Ä£¨©Vq£© |
12£®ÒÑÖªº¯ÊýÊýf£¨x£©=sin£¨¦Øx-$\frac{¦Ð}{6}$£©+$\frac{1}{2}$£¬x¡ÊR£¬ÇÒf£¨¦Á£©=-$\frac{1}{2}$£¬f£¨¦Â£©=$\frac{1}{2}$£¬Èô|¦Á-¦Â|µÄ×îСֵΪ$\frac{3¦Ð}{4}$£¬Ôòº¯ÊýµÄµ¥µ÷µÝÔöÇøÎª£¨¡¡¡¡£©
| A£® | [-$\frac{¦Ð}{2}$+2k¦Ð£¬¦Ð+2k¦Ð]£¬k¡ÊZ | B£® | [-$\frac{¦Ð}{2}$+3k¦Ð£¬¦Ð+3k¦Ð]£¬k¡ÊZ | ||
| C£® | [¦Ð+2k¦Ð£¬$\frac{5}{2}$¦Ð+2k¦Ð]£¬k¡ÊZ | D£® | [¦Ð+3k¦Ð£¬$\frac{5}{2}$¦Ð+3k¦Ð]£¬k¡ÊZ |
19£®ÒÑÖªÊýÁÐ{an}ÊǵȱÈÊýÁУ¬ÇÒa5-a3=${¡Ò}_{-1}^{1}$£¨x2+sinx£©dx£¬Ôòa32-2a2a6+a3a7=£¨¡¡¡¡£©
| A£® | $\frac{2}{3}$ | B£® | $\frac{4}{9}$ | C£® | 1 | D£® | $\frac{8}{3}$ |
11£®Õý·½ÌåABCD-A1B1C1D1µÄÀⳤΪ$\sqrt{3}$£¬ÔÚÕý·½Ìå±íÃæÉÏÓëµãA¾àÀëÊÇ2µÄµãÐγÉÒ»Ìõ·â±ÕµÄÇúÏߣ¬ÕâÌõÇúÏߵij¤¶ÈÊÇ£¨¡¡¡¡£©
| A£® | ¦Ð | B£® | $\frac{3}{2}¦Ð$ | C£® | 3¦Ð | D£® | $\frac{5}{2}¦Ð$ |
12£®Éèx¡Ê£¨0£¬¦Ð£©£¬Èô$\frac{1}{sinx}+\frac{1}{cosx}=2\sqrt{2}$£¬Ôò$sin£¨2x+\frac{¦Ð}{3}£©$=£¨¡¡¡¡£©
| A£® | $\frac{1}{2}$ | B£® | $\frac{\sqrt{3}}{2}$ | C£® | -$\frac{1}{2}$ | D£® | -$\frac{\sqrt{3}}{2}$ |