ÌâÄ¿ÄÚÈÝ
17£®Ä³¹¤³§ÓÐÁ½ÌõÏ໥²»Ó°ÏìµÄÉú²úÏß·Ö±ðÉú²ú¼×¡¢ÒÒÁ½ÖÖ²úÆ·£¬²úÆ·³ö³§Ç°ÐèÒª¶Ô²úÆ·½øÐÐÐÔÄܼì²â£®¼ì²âµÃ·ÖµÍÓÚ80µÄΪ²»ºÏ¸ñÆ·£¬Ö»Äܱ¨·Ï»ØÊÕ£»µÃ·Ö²»µÍÓÚ80µÄΪºÏ¸ñÆ·£¬¿ÉÒÔ³ö³§£®ÏÖËæ»ú³éÈ¡ÕâÁ½ÖÖ²úÆ·¸÷60¼þ½øÐмì²â£¬¼ì²â½á¹ûͳ¼ÆÈç±í£º| µÃ·Ö | [60£¬70£© | [70£¬80£© | [80£¬90£© | [90£¬100] |
| ¼× | 5 | 10 | 34 | 11 |
| ÒÒ | 8 | 12 | 31 | 9 |
£¨¢ò£©Éú²úÒ»¼þ²úÆ·¼×£¬ÈôÊǺϸñÆ·¿ÉÓ¯Àû100Ôª£¬ÈôÊDz»ºÏ¸ñÆ·Ôò¿÷Ëð20Ôª£»Éú²úÒ»¼þ²úÆ·ÒÒ£¬ÈôÊǺϸñÆ·¿ÉÓ¯Àû90Ôª£¬ÈôÊDz»ºÏ¸ñÆ·Ôò¿÷Ëð15Ôª£®ÔÚ£¨¢ñ£©µÄǰÌáÏ£º
£¨1£©¼ÇXΪÉú²ú1¼þ¼×ºÍ1¼þÒÒËùµÃµÄ×ÜÀûÈó£¬ÇóËæ»ú±äÁ¿XµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£»
£¨2£©ÇóÉú²ú5¼þÒÒËù»ñµÃµÄÀûÈó²»ÉÙÓÚ300ÔªµÄ¸ÅÂÊ£®
·ÖÎö £¨I£©Çó½âÔËÓùŵä¸ÅÂʵóö¼×£¬ÒÒÏÂÉú²úÏßʱΪºÏ¸ñÆ·µÄ¸ÅÂÊ£¬
£¨¢ò£©£¨1£©È·¶¨Ëæ»ú±äÁ¿XµÄËùÓпÉÄÜȡֵΪ190£¬85£¬70£¬-35£®
Çó½âP£¨X=190£©£¬P£¨X=85£©£¬P£¨X=70£©£¬P£¨X=-35£©£¬Çó½â·Ö²¼ÁУ¬
£¨2£©ÉèÉú²ú5¼þÒÒËù»ñµÃµÄÀûÈó²»ÉÙÓÚ300£¬ÔËÓöþÏî·Ö²¼ÎÊÌâÇó½â£¬
½â´ð ½â£º£¨¢ñ£©¼×ΪºÏ¸ñÆ·µÄ¸ÅÂÊԼΪ£º$\frac{45}{60}$=$\frac{3}{4}$£¬
ÒÒΪºÏ¸ñÆ·µÄ¸ÅÂÊԼΪ£º$\frac{40}{60}$=$\frac{2}{3}$£» ¡£¨2·Ö£©
£¨¢ò£©£¨1£©Ëæ»ú±äÁ¿xµÄËùÓÐȡֵΪ190£¬85£¬70£¬-35£¬¶øÇÒ
P£¨X=190£©=$\frac{3}{4}$¡Á$\frac{2}{3}$=$\frac{1}{2}$£¬P£¨X=85£©=$\frac{3}{4}$¡Á$\frac{1}{3}$=$\frac{1}{4}$£¬
P£¨X=70£©=$\frac{1}{4}$¡Á$\frac{2}{3}$=$\frac{1}{6}$£¬P£¨X=-35£©=$\frac{1}{4}$¡Á$\frac{1}{3}$=$\frac{1}{12}$£»
ËùÒÔËæ»ú±äÁ¿XµÄ·Ö²¼ÁÐΪ£º
| X | 190 | 85 | 70 | -35 |
| P | $\frac{1}{2}$ | $\frac{1}{4}$ | $\frac{1}{6}$ | $\frac{1}{12}$ |
ËùÒÔ£ºEX=$\frac{190}{2}+\frac{85}{4}+\frac{70}{6}-\frac{35}{12}$=125£¬¡£¨8·Ö£©
£¨2£©ÉèÉú²úµÄ5¼þÒÒÖÐÕýÆ·ÓÐn¼þ£¬Ôò´ÎÆ·ÓÐ5-n¼þ£¬
ÒÀÌâÒ⣬90n-15£¨5-n£©¡Ý300£¬½âµÃ£ºn¡Ý$\frac{25}{7}$£¬È¡n=4»òn=5£¬
Éè¡°Éú²ú5¼þÔª¼þÒÒËù»ñµÃµÄÀûÈó²»ÉÙÓÚ300Ôª¡±ÎªÊ¼þA£¬Ôò£º
P£¨A£©=C54£¨$\frac{2}{3}$£©4$•\frac{1}{3}$+£¨$\frac{2}{3}$£©5=$\frac{112}{243}$ ¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÁËÀëÉ¢Ð͵ĸÅÂÊ·Ö²¼ÎÊÌ⣬ȷ¶¨Ëæ»ú±äÁ¿µÄȡֵ£¬¹Ø¼üÊÇÈ·¶¨Ê¼þµÃ³öÏàÓ¦µÄ¸ÅÂÊ£¬·ÖÇåÌâÒ⣮
| A£® | 0 | B£® | -1 | C£® | -$\frac{3}{2}$ | D£® | -3 |
| ̬¶È µ÷²éÈËȺ | Ó¦¸ÃÈ¡Ïû | ²»Ó¦¸ÃÌá¸ß | ÎÞËùν |
| ÔÚУѧÉú | 2100ÈË | 120ÈË | yÈË |
| Éç»áÈËÊ¿ | 600ÈË | xÈË | zÈË |
£¨1£©ÇóÓ¦ÔÚ³Ö¡°²»Ó¦¸ÃÌá¸ß¡±Ì¬¶ÈµÄÈËÖгéÈ¡¶àÉÙÈË£¿
£¨2£©ÔÚ³Ö¡°²»Ó¦¸ÃÌá¸ß¡±Ì¬¶ÈµÄÈËÖУ¬Ó÷ֲã³éÑùµÄ·½·¨³éÈ¡6ÈËÆ½¾ù·Ö³ÉÁ½×é½øÐÐÉîÈë½»Á÷£¬ÇóµÚÒ»×éÖÐÔÚУѧÉúÈËÊý¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
| A£® | £¨0£¬$\frac{\sqrt{5}-1}{2}$£©¡È£¨$\frac{\sqrt{5}+1}{2}$£¬+¡Þ£© | B£® | £¨$\frac{\sqrt{5}-1}{2}$£¬1£©¡È£¨1£¬$\frac{\sqrt{5}+1}{2}$£© | C£® | £¨0£¬$\frac{\sqrt{3}-1}{2}$£©¡È£¨$\frac{\sqrt{3}+1}{2}$£¬+¡Þ£© | D£® | £¨$\frac{\sqrt{3}-1}{2}$£¬1£©¡È£¨1£¬$\frac{\sqrt{3}+1}{2}$£© |
| A£® | P£¾Q£¾M | B£® | Q£¾P£¾M | C£® | Q£¾M£¾P | D£® | M£¾Q£¾P |
| A£® | [2k¦Ð-$\frac{3¦Ð}{8}$£¬2k¦Ð+$\frac{¦Ð}{8}$]£¨k¡ÊZ£© | B£® | [2k¦Ð+$\frac{¦Ð}{8}$£¬2k¦Ð+$\frac{5¦Ð}{8}$]£¨k¡ÊZ£© | ||
| C£® | [k¦Ð-$\frac{3¦Ð}{8}$£¬k¦Ð+$\frac{¦Ð}{8}$]£¨k¡ÊZ£© | D£® | [k¦Ð+$\frac{¦Ð}{8}$£¬k¦Ð+$\frac{5¦Ð}{8}$]£¨k¡ÊZ£© |