题目内容
7.若log2a(5a-2)>0,则实数a的取值范围为$a>\frac{3}{5}$或$\frac{2}{5}<a<\frac{3}{5}$.分析 log2a(5a-2)>0,可得$\left\{\begin{array}{l}{2a>1}\\{5a-2>1}\end{array}\right.$,或$\left\{\begin{array}{l}{0<2a<1}\\{0<5a-2<1}\end{array}\right.$,解出即可得出.
解答 解:∵log2a(5a-2)>0,∴$\left\{\begin{array}{l}{2a>1}\\{5a-2>1}\end{array}\right.$,或$\left\{\begin{array}{l}{0<2a<1}\\{0<5a-2<1}\end{array}\right.$,
解得$a>\frac{3}{5}$或$\frac{2}{5}<a<\frac{3}{5}$.
则实数a的取值范围为$a>\frac{3}{5}$或$\frac{2}{5}<a<\frac{3}{5}$.
故答案为:$a>\frac{3}{5}$或$\frac{2}{5}<a<\frac{3}{5}$.
点评 本题考查了对数函数的单调性、分类讨论方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
18.设i是虚数单位,复数$\frac{i-2}{1+ai}$为纯虚数,则实数a为( )
| A. | 0 | B. | 1 | C. | 2 | D. | 4 |
2.已知a>2,函数f(x)=$\left\{\begin{array}{l}{lo{g}_{a}x+x-3(x>0)}\\{x-(\frac{1}{a})^{x}+3(x≤0)}\end{array}\right.$,若f(x)有两个零点分别为x1,x2,则( )
| A. | ?a>2,x1+x2=0 | B. | ?a>2,x1+x2=1 | C. | ?a>2,|x1-x2|=2 | D. | ?a>2,|x1-x2|=3 |
17.
如图,圆被其内接三角形分为4块,现有5种颜色准备用来涂这4块,要求每块涂一种颜色,且相邻两块的颜色不同,则不同的涂色方法有( )
| A. | 360种 | B. | 320种 | C. | 108种 | D. | 96种 |