题目内容

10.设函数f(x)=2${\;}^{\sqrt{|x|+1}}$-$\frac{3}{1+{x}^{2}}$,则使得f(x2+$\frac{2}{3}$x+2)>f(-x2+x-1)成立的x的取值范围是(  )
A.[-$\frac{3}{5}$,+∞)B.(-∞,$\frac{3}{5}$]C.(-$\frac{3}{5}$,+∞)D.$({-\frac{3}{5},\frac{3}{5}})$

分析 根据函数的表达式可知函数f(x)为偶函数,判断函数在x大于零的单调性为递增,根据偶函数关于原点对称可知,距离原点越远的点,函数值越大,可得|x2+$\frac{2}{3}$x+2|>|-x2+x-1|,解绝对值不等式即可.

解答 解:f(x)=2${\;}^{\sqrt{|x|+1}}$-$\frac{3}{1+{x}^{2}}$定义域为R,
∵f(-x)=f(x),
∴函数f(x)为偶函数,
当x>0时,f(x)=2${\;}^{\sqrt{|x|+1}}$-$\frac{3}{1+{x}^{2}}$单调递增,
根据偶函数性质可知:得f(x2+$\frac{2}{3}$x+2)>f(-x2+x-1)成立,
∴|x2+$\frac{2}{3}$x+2|>|-x2+x-1|,
∴x2+$\frac{2}{3}$x+2>x2-x+1,
∴x的范围为(-$\frac{3}{5}$,+∞)
故选:C.

点评 考查了偶函数的性质和利用偶函数图象的特点解决实际问题,属于基础题型,应牢记.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网