题目内容
已知函数f(x)=ax+x2-xlnx(a>1)
(1)求函数f(x)单调递增区间;
(2)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e是自然对数的底数),求实数a的取值范围.
(1)求函数f(x)单调递增区间;
(2)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e是自然对数的底数),求实数a的取值范围.
考点:利用导数研究函数的单调性,绝对值不等式的解法
专题:综合题,导数的综合应用
分析:(1)求导数,利用导数的正负,可求函数f(x)单调区间;
(2)f(x)的最大值减去f(x)的最小值大于或等于e-1,由单调性知,f(x)的最大值是f(1)或f(-1),最小值f(0)=1,由f(1)-f(-1)的单调性,判断f(1)与f(-1)的大小关系,再由f(x)的最大值减去最小值f(0)大于或等于e-1求出a的取值范围.
(2)f(x)的最大值减去f(x)的最小值大于或等于e-1,由单调性知,f(x)的最大值是f(1)或f(-1),最小值f(0)=1,由f(1)-f(-1)的单调性,判断f(1)与f(-1)的大小关系,再由f(x)的最大值减去最小值f(0)大于或等于e-1求出a的取值范围.
解答:
解:(1)函数f(x)的定义域为R,f'(x)=axlna+2x-lna=2x+(ax-1)lna.
令h(x)=f'(x)=2x+(ax-1)lna,h'(x)=2+axln2a,
当a>0,a≠1时,h'(x)>0,所以h(x)在R上是增函数,…(2分)
又h(0)=f'(0)=0,所以,f'(x)>0的解集为(0,+∞),f'(x)<0的解集为(-∞,0),
故函数f(x)的单调增区间为(0,+∞),单调减区间为(-∞,0)…(4分)
(2)因为存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1成立,
而当x∈[-1,1]时|f(x1)-f(x2)|≤f(x)max-f(x)min,
所以只要f(x)max-f(x)min≥e-1…(6分)
又因为x,f'(x),f(x)的变化情况如下表所示:
所以f(x)在[-1,0]上是减函数,在[0,1]上是增函数,
所以当x∈[-1,1]时,f(x)的最小值f(x)min=f(0)=1,
f(x)的最大值f(x)max为f(-1)和f(1)中的最大值.…(8分)
因为f(1)-f(-1)=a-
-2lna,
令g(a)=a-
-2lna(a>0),
因为g′(a)=(1-
)2>0,
所以g(a)=a-
-2lna在a∈(0,+∞)上是增函数.
而g(1)=0,故当a>1时,g(a)>0,即f(1)>f(-1);
当0<a<1时,g(a)<0,即f(1)<f(-1)…(10分)
所以,当a>1时,f(1)-f(0)≥e-1,即a-lna≥e-1,
而函数y=a-lna在a∈(1,+∞)上是增函数,解得a≥e;
当0<a<1时,f(-1)-f(0)≥e-1,即
+lna≥e-1,函数y=
+lna在a∈(0,1)上是减函数,
解得0<a≤
.
综上可知,所求a的取值范围为(0,
]∪[e,+∞).…(12分)
令h(x)=f'(x)=2x+(ax-1)lna,h'(x)=2+axln2a,
当a>0,a≠1时,h'(x)>0,所以h(x)在R上是增函数,…(2分)
又h(0)=f'(0)=0,所以,f'(x)>0的解集为(0,+∞),f'(x)<0的解集为(-∞,0),
故函数f(x)的单调增区间为(0,+∞),单调减区间为(-∞,0)…(4分)
(2)因为存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1成立,
而当x∈[-1,1]时|f(x1)-f(x2)|≤f(x)max-f(x)min,
所以只要f(x)max-f(x)min≥e-1…(6分)
又因为x,f'(x),f(x)的变化情况如下表所示:
| x | (-∞,0) | 0 | (0,+∞) |
| f'(x) | - | 0 | + |
| f(x) | 减函数 | 极小值 | 增函数 |
所以当x∈[-1,1]时,f(x)的最小值f(x)min=f(0)=1,
f(x)的最大值f(x)max为f(-1)和f(1)中的最大值.…(8分)
因为f(1)-f(-1)=a-
| 1 |
| a |
令g(a)=a-
| 1 |
| a |
因为g′(a)=(1-
| 1 |
| a |
所以g(a)=a-
| 1 |
| a |
而g(1)=0,故当a>1时,g(a)>0,即f(1)>f(-1);
当0<a<1时,g(a)<0,即f(1)<f(-1)…(10分)
所以,当a>1时,f(1)-f(0)≥e-1,即a-lna≥e-1,
而函数y=a-lna在a∈(1,+∞)上是增函数,解得a≥e;
当0<a<1时,f(-1)-f(0)≥e-1,即
| 1 |
| a |
| 1 |
| a |
解得0<a≤
| 1 |
| e |
综上可知,所求a的取值范围为(0,
| 1 |
| e |
点评:本题考查了基本函数导数公式,利用导数研究函数的单调性及利用导数求闭区间上函数的最值.属于难题.
练习册系列答案
相关题目
已知
,
为单位向量,则下列正确的是( )
| a |
| b |
A、
| ||||||||
B、
| ||||||||
C、|
| ||||||||
D、
|