题目内容
已知数列{an}满足:a1=
,a2=
,2an=an+1+an-1(n≥2,n∈N•),数列{bn}满足:b1<0,3bn-bn-1=n(n≥2,n∈R),数列{bn}的前n项和为Sn.
(Ⅰ)求证:数列{bn-an}为等比数列;
(Ⅱ)求证:数列{bn}为递增数列;
(Ⅲ)若当且仅当n=3时,Sn取得最小值,求b1的取值范围.
| 1 |
| 4 |
| 3 |
| 4 |
(Ⅰ)求证:数列{bn-an}为等比数列;
(Ⅱ)求证:数列{bn}为递增数列;
(Ⅲ)若当且仅当n=3时,Sn取得最小值,求b1的取值范围.
考点:数列递推式,数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)由已知得{an}是等差数列,an=
+(n-1)•
=
,bn+1-an+1=
bn+
-
=
(bn-an).由此能证明{bn-an}是以b1-
为首项,以
为公比的等比数列.
(Ⅱ)由bn=(b1-
)•(
)n-1+
.得当n≥2时,bn-bn-1=
-
(b1-
)(
)n-2.由此能证明{bn}是单调递增数列.
(Ⅲ)由已知得
,由此能求出b1的取值范围.
| 1 |
| 4 |
| 1 |
| 2 |
| 2n-1 |
| 4 |
| 1 |
| 3 |
| n+1 |
| 3 |
| 2n+1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 3 |
(Ⅱ)由bn=(b1-
| 1 |
| 4 |
| 1 |
| 3 |
| 2n-1 |
| 4 |
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 4 |
| 1 |
| 3 |
(Ⅲ)由已知得
|
解答:
解:(Ⅰ)∵2an=an+1+an-1(n≥2,n∈N•),
∴{an}是等差数列.
又∵a1=
,a2=
,
∴an=
+(n-1)•
=
,
∵bn=
bn-1+
,(n≥2,n∈N*),
∴bn+1-an+1=
bn+
-
=
bn-
=
(bn-
)
=
(bn-an).
又∵b1-a1=b1-
≠0,
∴{bn-an}是以b1-
为首项,以
为公比的等比数列.
(Ⅱ)∵bn-an=(b1-
)•(
)n-1,an=
.
∴bn=(b1-
)•(
)n-1+
.
当n≥2时,bn-bn-1=
-
(b1-
)(
)n-2.
又b1<0,∴bn-bn-1>0.
∴{bn}是单调递增数列.
(Ⅲ)∵当且仅当n=3时,Sn取最小值.
∴
,即
,
∴b1∈(-47,-11).
∴{an}是等差数列.
又∵a1=
| 1 |
| 4 |
| 3 |
| 4 |
∴an=
| 1 |
| 4 |
| 1 |
| 2 |
| 2n-1 |
| 4 |
∵bn=
| 1 |
| 3 |
| n |
| 3 |
∴bn+1-an+1=
| 1 |
| 3 |
| n+1 |
| 3 |
| 2n+1 |
| 4 |
=
| 1 |
| 3 |
| 2n-1 |
| 12 |
| 1 |
| 3 |
| 2n-1 |
| 4 |
=
| 1 |
| 3 |
又∵b1-a1=b1-
| 1 |
| 4 |
∴{bn-an}是以b1-
| 1 |
| 4 |
| 1 |
| 3 |
(Ⅱ)∵bn-an=(b1-
| 1 |
| 4 |
| 1 |
| 3 |
| 2n-1 |
| 4 |
∴bn=(b1-
| 1 |
| 4 |
| 1 |
| 3 |
| 2n-1 |
| 4 |
当n≥2时,bn-bn-1=
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 4 |
| 1 |
| 3 |
又b1<0,∴bn-bn-1>0.
∴{bn}是单调递增数列.
(Ⅲ)∵当且仅当n=3时,Sn取最小值.
∴
|
|
∴b1∈(-47,-11).
点评:本题考查等比数列的证明,考查增数列的证明,考查数列的首项的取值范围的求法,解题时要认真审题,注意构造法的合理运用.
练习册系列答案
相关题目