题目内容

2.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点M($\sqrt{3}$,$\sqrt{2}$),且离心率为$\frac{\sqrt{3}}{3}$,直线l过点P(3,0),且与椭圆C交于不同的A、B两点.
(1)求椭圆C的方程;
(2)求$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围.

分析 (1)由椭圆的离心率e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{3}}{3}$,则$\frac{{b}^{2}}{{a}^{2}}$=$\frac{2}{3}$①,将M($\sqrt{3}$,$\sqrt{2}$),代入椭圆方程,即可求得椭圆的标准方程;
(2)设其方程为:y=k(x-3),代入椭圆方程,由△>0,解得:k2<$\frac{4}{3}$,$\overrightarrow{PA}$=(x1-3,y1),$\overrightarrow{PB}$=(x2-3,y2),则$\overrightarrow{PA}$•$\overrightarrow{PB}$=(x1-3)(x2-3)+y1y2=(k2+1)[x1x2-3(x1+x2)+9],由韦达定理可知,代入求得$\overrightarrow{PA}$•$\overrightarrow{PB}$=2+$\frac{2}{3{k}^{2}+2}$,由k的取值范围,即可求得$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围.

解答 解:(1)由已知可得:由椭圆的离心率e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{3}}{3}$,则$\frac{{b}^{2}}{{a}^{2}}$=$\frac{2}{3}$①,
由点M($\sqrt{3}$,$\sqrt{2}$)在椭圆上,$\frac{3}{{a}^{2}}+\frac{2}{{b}^{2}}=1$②,解得:a2=6,b2=4,
∴椭圆C的方程为:$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{4}=1$; (4分)
(2)①当直线l的斜率不存在时,l的方程为:x=3与椭圆无交点.
故直线l的斜率存在,设其方程为:y=k(x-3),A(x1,y1),B(x2,y2),
由$\left\{\begin{array}{l}{y=k(x-3)}\\{\frac{{x}^{2}}{6}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,整理得:(3k2+2)x2-18k2x+27k2-12=0,
∵△=(18k22-4(3k2+2)(27k2-12)>0,解得:k2<$\frac{4}{3}$,
x1+x2=$\frac{18{k}^{2}}{3{k}^{2}+2}$,x1x2=$\frac{27{k}^{2}-12}{3{k}^{2}+2}$,(6分)
∵$\overrightarrow{PA}$=(x1-3,y1),$\overrightarrow{PB}$=(x2-3,y2
∴$\overrightarrow{PA}$•$\overrightarrow{PB}$=(x1-3)(x2-3)+y1y2=(x1-3)(x2-3)+k2(x1-3)(x2-3),
=(k2+1)[x1x2-3(x1+x2)+9]
=(k2+1)( $\frac{27{k}^{2}-12}{3{k}^{2}+2}$-$\frac{54{k}^{2}}{3{k}^{2}+2}$+9)=$\frac{6{k}^{2}+6}{3{k}^{2}+2}$
=2+$\frac{2}{3{k}^{2}+2}$,(10分)
∵0≤k2≤$\frac{4}{3}$,
∴$\frac{1}{6}$<$\frac{1}{3{k}^{2}+2}$≤$\frac{1}{2}$,
∴$\frac{7}{3}$<2+$\frac{2}{3{k}^{2}+2}$≤3,
∴$\overrightarrow{PA}$•$\overrightarrow{PB}$∈($\frac{7}{3}$,3].(12分)

点评 本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,考查向量数量积的坐标运算,考查计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网