题目内容

“a≤3”是“函数f(x)=x2-2ax+2在区间[3,+∞)内单调递增”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据函数单调性的性质以及充分条件和必要条件的定义即可得到结论.
解答: 解:若函数f(x)=x2-2ax+2在区间[3,+∞)内单调递增,
则对称轴x=a≤3,
则“a≤3”是“函数f(x)=x2-2ax+2在区间[3,+∞)内单调递增”的充要条件,
故选:C
点评:本题主要考查充分条件和必要条件的判断,根据函数的单调性的性质是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网