题目内容

已知点A(2,0),B(0,2),C(cosα,sinα).
(Ⅰ)若α∈[-π,0],且|
AC
|=|
BC
|,求角α;
(Ⅱ)若α∈[
π
2
,π],且
AC
BC
,求
sin2α
2
sin(α-
π
4
)-cos2α
的值.
考点:三角函数中的恒等变换应用,平面向量数量积的运算
专题:三角函数的求值,平面向量及应用
分析:(Ⅰ)由|
AC
|=|
BC
|,可得(cosα-2)2+sin2α=cos2α+(sinα-2)2,化简可得sinα=cosα,结合α∈[-π,0],可得α的值.
(Ⅱ)由
AB
BC
=0,整理求得cosα+sinα、2sinαcosα、sinα-cosα的值,从而求得
sin2α
2
sin(α-
π
4
)-cos2α
=
2sinαcosα
(sinα-cosα)[1+(cosα+sinα)]
的值.
解答: 解:(Ⅰ)由题意可得
AC
=(cosα-2,sinα),
BC
=(cosα,sinα-2),
再由|
AC
|=|
BC
|,可得(cosα-2)2+sin2α=cos2α+(sinα-2)2,化简可得sinα=cosα,
又α∈[-π,0],故α=-
4

(Ⅱ)由
AB
BC
=0,整理得cosα+sinα=
1
2
,2sinαcosα=-
3
4

由于(cosα-sinα)2=(cosα+sinα)2-4sinαcosα=
7
4
,α∈[
π
2
,π],可得sinα-cosα=
7
2

sin2α
2
sin(α-
π
4
)-cos2α
=
2sinαcosα
(sinα-cosα)[1+(cosα+sinα)]
=
-
3
4
7
2
×(1+
1
2
)
=-
7
7
点评:本题主要考查三角函数的恒等变换及化简求值,两个向量的数量积公式、两个向量垂直的性质,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网