题目内容
18.已知f(x)=2x2+x-k,g(x)=x3-3x,若对任意的x1∈[-1,3],总存在x0∈[-1,3],使得f(x1)≤g(x0)成立,则实数k的取值范围是k≥3.分析 对任意x1∈[-1,3],x0∈[-1,3],都有f(x1)≤g(x0)成立,即f(x)在区间[-1,3]上的最大值小于或等于g(x)的最大值,利用导数求g(x)的最大值,再由二次函数的最值求f(x)的最大值即可.
解答 解:若对任意x1∈[-1,3],x0∈[-1,3],都有f(x1)≤g(x0)成立,
即f(x)在区间[-1,3]上的最大值都小于或等于g(x)的最大值,
∵g(x)=x3-3x,
∴g′(x)=3x2-3,
令3x2-3=0,解得x=±1,当x∈(-1,1)时,g′(x)<0,g(x)单调递减,
当x∈(1,3]时,g′(x)>0,g(x)单调递增,故当x=1时,函数g(x)取到极小值,
也是该区间的最小值g(1)=-2,
又g(-1)=2,g(3)=18.
∴g(x)在[-1,3]上的最大值为18.
而f(x)=2x2+x-k为开口向上的抛物线,对称轴为x=-$\frac{1}{4}$,故当x=3时取最大值f(3)=21-k,
由21-k≤18,解得k≥3.
∴实数k的取值范围是k≥3.
故答案为:k≥3.
点评 本题为函数导数的综合应用,涉及函数的极值最值和恒成立问题,属中档题.
练习册系列答案
相关题目
10.$\frac{1-i}{1+i}$=( )
| A. | -i | B. | i | C. | 1 | D. | -1 |
7.
某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.[附:回归直线的斜率和截距的最小二乘估计公式分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)试估计该公司投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
由表中的数据显示,x与y之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出y关于x的回归直线方程.
(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)试估计该公司投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
| 广告投入x(单位:万元) | 1 | 2 | 3 | 4 | 5 |
| 销售收益y(单位:万元) | 2 | 3 | 2 | 7 |