题目内容
已知f(x)=π,则f(2π)=( )
| A、2π | B、4π | C、π | D、x |
考点:函数的值
专题:函数的性质及应用
分析:直接利用函数的表达式求解即可.
解答:
解:已知f(x)=π,
所以函数是常函数,
∴f(2π)=π
故选:C.
所以函数是常函数,
∴f(2π)=π
故选:C.
点评:本题考查函数的值的求法,函数的基本知识的应用.
练习册系列答案
相关题目
两圆(x-2)2+(y+1)2=4与(x+2)2+(y-2)2=16的公切线有( )
| A、1条 | B、2条 | C、4条 | D、3条 |
由线y=x2在P处的切线的斜率为3,则P点的坐标为( )
A、(-
| ||||
B、(
| ||||
C、(
| ||||
D、(-
|
已知两圆C1:x2+y2=1,C2:(x-3)2+(y-4)2=16,则这两圆的位置关系是( )
| A、相交 | B、外切 | C、内含 | D、内切 |
已知cos(75°+α)=
,则cos(30°-2α)的值为( )
| 1 |
| 3 |
A、
| ||
B、
| ||
C、
| ||
D、
|
已知
=
+5
,
=-2
+8
,
=4
+2
,则( )
| AB |
| a |
| b |
| BC |
| a |
| b |
| CD |
| a |
| b |
| A、A、B、C三点共线 |
| B、B、C、D三点共线 |
| C、A、B、D三点共线 |
| D、A、C、D三点共线 |
若直线x+2y+m=0按向量
=(-1,-2)平移后与圆C:x2+y2+2x-4y=0相切,则实数m的值等于( )
| a |
| A、3或13 | B、3或-13 |
| C、-3或7 | D、-3或-13 |