题目内容

有20个不加区别的小球放入编号为1、2、3的三个盒子中,要求每个盒内的球数不少于它的编号数,共有
 
种不同的放法.
考点:计数原理的应用
专题:排列组合
分析:原问题可化为将17个小球放进3个盒子,每个小盒至少一个的问题,利用插空法计算可得答案.
解答: 解:根据题意,先在编号为2的盒子中依次放入1个小球,编号为3的盒子中依次放入2个小球,还剩余17个小球,只需将这17个小球放入3个小盒,每个小盒至少一个即可,
17个小球之间共16个空位,从中选2个,插入挡板即可,则有C162=120种不同的放法,
故答案为:120.
点评:本题考查排列、组合的应用,考查学生分析转化问题的能力,解题的关键是将原来的问题转化为将17个小球放进3个盒子,每个小盒至少一个的问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网