题目内容
设数列{an}、{bn}满足a1=1,a2=3,an+1=
,anbn=an+1bn+1.
(Ⅰ)求(an)的通项公式;
(Ⅱ)设数列{cn}满足cn=bnlog3an,求数列{cn}的前n项和.
| anbn+1 |
| 2bn |
(Ⅰ)求(an)的通项公式;
(Ⅱ)设数列{cn}满足cn=bnlog3an,求数列{cn}的前n项和.
考点:数列的求和,数列递推式
专题:计算题,等差数列与等比数列
分析:(Ⅰ)由anbn=an+1bn+1得出{anbn}是常数列.利用a1=1,a2=3,a2=
,得b1=
,从而anbn=a1b1=
,bn=
,得出{an}是以a1=1为首项,以3 为公比的等比数列.
(Ⅱ)由(Ⅰ)cn=bnlog3an=
(n-1)
,应用错位相消法求和.
| a1b1+1 |
| 2b1 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 5an |
(Ⅱ)由(Ⅰ)cn=bnlog3an=
| 1 |
| 5 |
| 1 |
| 3n-1 |
解答:
解:(Ⅰ)由a1=1,a2=3,a2=
,得b1=
,
∵anbn=an+1bn+1.∴{anbn}是常数列.
∴anbn=a1b1=
,bn=
,an+1=
+
=3an,
∴{an}是以a1=1为首项,以3 为公比的等比数列.
∴an=3n-1,
(Ⅱ)cn=bnlog3an=
(n-1)
,
设数列{cn}的前n项和为Sn,
则Sn=
[1×
+2×
+…+(n-1)
],①
Sn=
[1×
+2×
+…+(n-2)
+(n-1)
]②
①-②得,
Sn=
[
+
+…+
-(n-1)
]=
[
-(n-1)
],
∴Sn=
-
| a1b1+1 |
| 2b1 |
| 1 |
| 5 |
∵anbn=an+1bn+1.∴{anbn}是常数列.
∴anbn=a1b1=
| 1 |
| 5 |
| 1 |
| 5an |
| an |
| 2 |
| 1 |
| 2bn |
∴{an}是以a1=1为首项,以3 为公比的等比数列.
∴an=3n-1,
(Ⅱ)cn=bnlog3an=
| 1 |
| 5 |
| 1 |
| 3n-1 |
设数列{cn}的前n项和为Sn,
则Sn=
| 1 |
| 5 |
| 1 |
| 31 |
| 1 |
| 32 |
| 1 |
| 3n-1 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n-1 |
| 1 |
| 3n |
①-②得,
| 2 |
| 3 |
| 1 |
| 5 |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3n-1 |
| 1 |
| 3n |
| 1 |
| 5 |
| ||||
1-
|
| 1 |
| 3n |
∴Sn=
| 3 |
| 20 |
| 2n+1 |
| 20•3n-1 |
点评:本题主要考查的递推关系与通项公式,错位相消法求和,考查计算能力,逻辑推理能力.
练习册系列答案
相关题目