题目内容

设数列{an}、{bn}满足a1=1,a2=3,an+1=
anbn+1
2bn
,anbn=an+1bn+1
(Ⅰ)求(an)的通项公式;
(Ⅱ)设数列{cn}满足cn=bnlog3an,求数列{cn}的前n项和.
考点:数列的求和,数列递推式
专题:计算题,等差数列与等比数列
分析:(Ⅰ)由anbn=an+1bn+1得出{anbn}是常数列.利用a1=1,a2=3,a2=
a1b1+1
2b1
,得b1=
1
5
,从而anbn=a1b1=
1
5
,bn=
1
5an
,得出{an}是以a1=1为首项,以3 为公比的等比数列.
(Ⅱ)由(Ⅰ)cn=bnlog3an=
1
5
(n-1)
1
3n-1
,应用错位相消法求和.
解答: 解:(Ⅰ)由a1=1,a2=3,a2=
a1b1+1
2b1
,得b1=
1
5

∵anbn=an+1bn+1.∴{anbn}是常数列.
∴anbn=a1b1=
1
5
,bn=
1
5an
,an+1=
an
2
+
1
2bn
=3an
∴{an}是以a1=1为首项,以3 为公比的等比数列.
∴an=3n-1
(Ⅱ)cn=bnlog3an=
1
5
(n-1)
1
3n-1

设数列{cn}的前n项和为Sn
则Sn=
1
5
[
1
31
+2×
1
32
+…+(n-1)
1
3n-1
],①
1
3
Sn=
1
5
[
1
32
+2×
1
33
+…+(n-2)
1
3n-1
+(n-1)
1
3n
]②
①-②得,
2
3
Sn=
1
5
[
1
3 
+
1
32
+…+
1
3n-1
-(n-1)
1
3n
]=
1
5
[
1
3
(1-
1
3n-1
)
1-
1
3
-(n-1)
1
3n
],
∴Sn=
3
20
-
2n+1
20•3n-1
点评:本题主要考查的递推关系与通项公式,错位相消法求和,考查计算能力,逻辑推理能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网