题目内容
12.函数f(x)=$\frac{{x}^{2}}{2}$+sinx+2014,则f′(x)的大致图象是( )| A. | B. | ||||
| C. | D. |
分析 求出函数的导数,利用导函数的解析式,利用特殊值判断函数的图象即可.
解答 解:函数f(x)=$\frac{{x}^{2}}{2}$+sinx+2014,则f′(x)=x+cosx,当x=-$\frac{π}{2}$时,f′(-$\frac{π}{2}$)=-$\frac{π}{2}$,排除C.
当x=$\frac{π}{2}$时,f′($\frac{π}{2}$)=$\frac{π}{2}$,排除选项D,
x=0时,f′(0)=1,排除A,
故选:B.
点评 本题考查函数的导数,函数的图象的判断,函数经过的特殊点是解题常用方法.
练习册系列答案
相关题目
3.某几何体的三视图中的三角形都是直角三角形.如图所示.则该几何体中直角三角形的个数为( )

| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
20.在棱长为2的正方体ABCD-A1B1C1D1中,M是棱A1D1的中点,过C1,B,M作正方体的截面,则这个截面的面积为( )
| A. | $\frac{3\sqrt{5}}{2}$ | B. | $\frac{3\sqrt{5}}{8}$ | C. | $\frac{9}{2}$ | D. | $\frac{9}{8}$ |
2.“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据(xi,yi)(i=1,2,…,6),如表所示:
已知$\overline y=\frac{1}{6}\sum_{i=1}^6{y_i}$=80.
(Ⅰ)求出q的值;
(Ⅱ)已知变量x,y具有线性相关关系,求产品销量y(件)关于试销单价x(元)的线性回归方程$\widehaty=\widehatbx+\widehata$;
(Ⅲ)用$\widehat{y_i}$表示用(Ⅱ)中所求的线性回归方程得到的与xi对应的产品销量的估计值.当销售数据(xi,yi)对应的残差的绝对值$|\widehat{y_i}-{y_i}|≤1$时,则将销售数据(xi,yi)称为一个“好数据”.现从6个销售数据中任取3个,求“好数据”个数ξ的分布列和数学期望E(ξ).
(参考公式:线性回归方程中$\widehatb$,$\widehata$的最小二乘估计分别为$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$)
| 试销单价x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
| 产品销量y(件) | q | 84 | 83 | 80 | 75 | 68 |
(Ⅰ)求出q的值;
(Ⅱ)已知变量x,y具有线性相关关系,求产品销量y(件)关于试销单价x(元)的线性回归方程$\widehaty=\widehatbx+\widehata$;
(Ⅲ)用$\widehat{y_i}$表示用(Ⅱ)中所求的线性回归方程得到的与xi对应的产品销量的估计值.当销售数据(xi,yi)对应的残差的绝对值$|\widehat{y_i}-{y_i}|≤1$时,则将销售数据(xi,yi)称为一个“好数据”.现从6个销售数据中任取3个,求“好数据”个数ξ的分布列和数学期望E(ξ).
(参考公式:线性回归方程中$\widehatb$,$\widehata$的最小二乘估计分别为$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$)