ÌâÄ¿ÄÚÈÝ
7£®¢Ùf£¨$\frac{¦Ð}{3}$£©=$\frac{\sqrt{3}}{2}$
¢Úº¯Êýf£¨x£©ÔÚ£¨$\frac{¦Ð}{2}$£¬¦Ð£©ÉÏΪ¼õº¯Êý
¢ÛÈÎÒâx¡Ê[0£¬$\frac{¦Ð}{2}$]£¬¶¼ÓÐf£¨x£©+f£¨¦Ð-x£©=4£®
| A£® | ¢Ù | B£® | ¢Û | C£® | ¢Ù¢Û | D£® | ¢Ù¢Ú |
·ÖÎö ÓÉͼÐοɵú¯ÊýµÄ½âÎöʽ£¬ÔÙ·Ö±ðÅжϣ¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£ºµ±0¡Üx¡Üarctan2ʱ£¬f£¨x£©=$\frac{1}{2}$tanx£»![]()
µ±arctan2£¼x£¼$\frac{¦Ð}{2}$£¬ÔÚ¡÷OBEÖУ¬f£¨x£©=S¾ØÐÎOABM-S¡÷OME
=2-$\frac{1}{2}$EM•OM=2-$\frac{2}{tanx}$£»
µ±x=$\frac{¦Ð}{2}$ʱ£¬f£¨x£©=2£»
µ±$\frac{¦Ð}{2}$£¼x¡Ü¦Ð-arctan2ʱ£¬Í¬Àí¿ÉµÃf£¨x£©=2-$\frac{2}{tanx}$£®
µ±¦Ð-arctan2£¼x¡Ü¦Ðʱ£¬f£¨x£©=4-$\frac{1}{2}$¡Á1¡Átan£¨¦Ð-x£©=4+$\frac{1}{2}$tanx£®ÓÚÊǿɵãº
¢Ùf£¨$\frac{¦Ð}{3}$£©=$\frac{1}{2}$tan$\frac{¦Ð}{3}$=$\frac{\sqrt{3}}{2}$£¬ÕýÈ·£»
¢Úµ±$\frac{¦Ð}{2}$£¼x¡Ü¦Ð-arctan2ʱ£¬ÓÉf£¨x£©=2-$\frac{2}{tanx}$£¬ÎªÔöº¯Êý£®µ±¦Ð-arctan2£¼x¡Ü¦Ðʱ£¬f£¨x£©=4+$\frac{1}{2}$tanx£¬ÎªÔöº¯Êý£¬Òò´Ë²»ÕýÈ·£®
¢Û?x¡Ê[0£¬$\frac{¦Ð}{2}$]£¬ÓÉͼÐμ°ÆäÉÏÃæ£¬ÀûÓöԳÆÐԿɵãºf£¨x£©+f£¨¦Ð-x£©=4£¬Òò´ËÕýÈ·£»
¹ÊÑ¡C£®
µãÆÀ ±¾Ì⿼²éÁËͼÐÎÃæ»ýµÄ¼ÆËã¡¢ÕýÇк¯ÊýµÄµ¥µ÷ÐÔ¡¢¼òÒ×Âß¼µÄÅж¨£¬¿¼²éÁË·ÖÀàÌÖÂÛ˼Ïë·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $£¨{3\sqrt{2}£¬\frac{3¦Ð}{4}}£©$ | B£® | $£¨{3\sqrt{2}£¬\frac{5¦Ð}{4}}£©$ | C£® | $£¨{3£¬\frac{5¦Ð}{4}}£©$ | D£® | $£¨{3£¬\frac{3¦Ð}{4}}£©$ |
| A£® | {-2£¬-1£¬0£¬1£¬2} | B£® | {-1£¬2£¬3} | C£® | {-2£¬-1£¬0£¬1£¬2£¬3} | D£® | {-1£¬2} |
| A£® | 143 | B£® | 144 | C£® | 287 | D£® | 288 |
| A£® | [-3£¬3] | B£® | [-1£¬2] | C£® | [-3£¬2] | D£® | £¨-1£¬2] |