ÌâÄ¿ÄÚÈÝ
4£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®ÔÚ¼«×ø±êÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔµãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬Ô²CµÄ·½³ÌΪ¦Ñ=4cos¦È£®£¨¢ñ£© ÇóÔ²CµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£© ÉèÔ²CÓëÖ±Ïßl½»ÓÚµãA¡¢B£¬ÈôµãPµÄ×ø±êΪ£¨2£¬1£©£¬Çó|PA|+|PB|£®
·ÖÎö £¨1£©ÀûÓÃx=¦Ñcos¦È£¬¦Ñ2=x2+y2£¬½«ÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=4cos¦È£¬Á½±ßͬ³Ë¦Ñ£¬»¯³ÉÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÀûÓòÎÊýµÄ¼¸ºÎÒâÒ壬¼´¿ÉÇó|PA|+|PB|£®
½â´ð ½â£º£¨1£©ÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=4cos¦È£¬ËùÒÔ¦Ñ2=4¦Ñcos¦È£¬ËüµÄÖ±½Ç×ø±ê·½³ÌÊÇ£ºx2+y2=4x£¬¼´£¨x-2£©2+y2=4¡£®£¨3·Ö£©
£¨2£©ÉèµãA¡¢B¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬½«$\left\{\begin{array}{l}{x=2-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¬´úÈ루x-2£©2+y2=4ÕûÀíµÃ${t^2}+\sqrt{2}t-3=0$£¬Ôò$\left\{{\begin{array}{l}{{t_1}+{t_2}=-\sqrt{2}}\\{{t_{1•}}{t_2}=-3}\end{array}}\right.$£¬¡..£¨5·Ö£©
ÓÖ|PA|+|PB|=$|{t_1}|+|{t_2}|=|{{t_1}-{t_2}}|={£¨{t_1}+{t_2}£©^2}-4{t_1}t{\;}_2=\sqrt{14}$¡..£¨10·Ö£©
µãÆÀ ±¾Ì⿼²é¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬¿¼²é²ÎÊýÒâÒåµÄÔËÓã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
15£®Éèf£¨x£©=$\left\{\begin{array}{l}{1-\sqrt{x}£¬x¡Ý0}\\{{2}^{x}£¬x£¼0}\end{array}\right.$£¬Ôòf£¨f£¨-log23£©£©=£¨¡¡¡¡£©
| A£® | $\frac{3-\sqrt{3}}{3}$ | B£® | $\frac{3}{2}$ | C£® | 1-$\sqrt{3}$ | D£® | $\sqrt{3}$-1 |
9£®ÔÚ¿Õ¼äÖУ¬ÏÂÁÐÃüÌâ´íÎóµÄÊÇ£¨¡¡¡¡£©
| A£® | ¹ýÖ±ÏßÍâÒ»µãÓÐÇÒÖ»ÓÐÒ»ÌõÖ±ÏßÓëÒÑÖªÖ±Ï߯½ÐÐ | |
| B£® | ²»¹«ÏßµÄÈý¸öµãÈ·¶¨Ò»¸öÆ½Ãæ | |
| C£® | Èç¹ûÁ½ÌõÖ±Ïß´¹Ö±ÓÚͬһÌõÖ±Ïߣ¬ÄÇôÕâÁ½ÌõÖ±Ï߯½ÐÐ | |
| D£® | Èç¹ûÁ½¸öÆ½Ãæ´¹Ö±ÓÚͬһ¸öÆ½Ãæ£¬ÄÇôÕâÁ½¸öÆ½Ãæ¿ÉÄÜ»¥Ïà´¹Ö± |
14£®Ó뺯Êýy=x-1-£¨x-2£©0±íʾͬһ¸öº¯ÊýµÄÊÇ£¨¡¡¡¡£©
| A£® | y=x-2 | B£® | $y=\frac{{{x^2}-4}}{x+2}$ | C£® | $y=\frac{{{{£¨{x-2}£©}^2}}}{x-2}$ | D£® | $y={£¨{\frac{x-2}{{\sqrt{x-2}}}}£©^2}$ |