题目内容

17.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$),其部分图象如图所示.
(1)求函数 y=f(x)的解析式;
(2)若α∈(0,$\frac{π}{2}$),且cos($\frac{π}{2}$+α)=-$\frac{3}{5}$,求f(α)的值.

分析 (1)由题意求出A,T,由周期公式求出ω,将 ($\frac{7π}{12}$,-1)代入,结合φ范围可求φ,即可得到函数的解析式.
(2)利用诱导公式可求sinα,利用同角三角函数基本关系式可求cosα,利用二倍角公式可求sin2α,cos2α,利用两角和的正弦函数公式即可计算求值得解.

解答 (本题满分为14分)
解:(1)由图象知 A=1,T=4,($\frac{7π}{12}-\frac{π}{3}$)=π,$ω=\frac{2π}{T}=2$,…(3分)
将 ($\frac{7π}{12}$,-1)代入f(x)=sin(2x+φ),得sin($\frac{7π}{6}$+φ)=-1,…(4分)
因为-$\frac{π}{2}$<φ<$\frac{π}{2}$,$\frac{2π}{3}$<$\frac{7π}{6}$+φ<$\frac{5π}{3}$,
所以$\frac{7π}{6}$+φ=$\frac{3π}{2}$,即φ=$\frac{π}{3}$,…(6分)
所以 f(x)=sin(2x+$\frac{π}{3}$),x∈R. …(7分)
(2)∵α∈(0,$\frac{π}{2}$),cos($\frac{π}{2}+α$)=-$\frac{3}{5}$,
∴sin$α=\frac{3}{5}$,cos$α=\frac{4}{5}$,…(9分)
∴sin2$α=2sinαcosα=\frac{24}{25}$,cos2α=1-2sin2α=$\frac{7}{25}$,…(11分)
∴f(α)=sin(2α+$\frac{π}{3}$)=sin2αcos$\frac{π}{3}$+cos2αsin$\frac{π}{3}$=$\frac{24}{25}×\frac{1}{2}$+$\frac{7}{25}×\frac{\sqrt{3}}{2}$=$\frac{24}{50}+\frac{7\sqrt{3}}{50}$.…(14分)

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,注意函数的周期的求法,考查计算能力,常考题型,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网