题目内容
3.(1)求sin∠ABD的值;
(2)若∠BCD=$\frac{2π}{3}$,求CD的长.
分析 (1)设AD=2x,AB=3x,由余弦定理求出AD=2,AB=3,再由正弦定理能求出sin∠ABD.
(2)由sin(∠ABD+∠CBD)=sin$\frac{π}{2}$,得sin∠CBD=cos∠ABD,求出sin$∠CBD=\frac{2\sqrt{7}}{7}$,由此利用正弦定理能求出CD.
解答 解:(1)设AD=2x,AB=3x,![]()
由余弦定理得:cos$\frac{π}{3}$=$\frac{4{x}^{2}+9{x}^{2}-7}{2×2x×3x}$=$\frac{1}{2}$,
解得x=1,∴AD=2,AB=3,
∴由正弦定理得:$\frac{sin∠ABD}{2}=\frac{sin\frac{π}{3}}{\sqrt{7}}$,
解得sin∠ABD=$\frac{\sqrt{21}}{7}$.
(2)sin(∠ABD+∠CBD)=sin$\frac{π}{2}$,∴sin∠CBD=cos∠ABD,
cos$∠ABD=\sqrt{1-\frac{21}{49}}$=$\frac{2\sqrt{7}}{7}$,∴sin$∠CBD=\frac{2\sqrt{7}}{7}$,
由正弦定理得$\frac{CD}{sin∠CBD}=\frac{BD}{sin\frac{2π}{3}}$,解得CD=$\frac{4\sqrt{3}}{3}$.
点评 本题考角的正弦值的求法,考查三角形边长的求法,考查正弦定理、余弦定理、诱导公式、同角三角函数关系式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
练习册系列答案
相关题目