题目内容

数列{an}满足a1=1,且对于任意的n∈N*都有an+1=an+a1+n,则
1
a1
+
1
a2
+…+
1
a2014
等于(  )
A、
4026
2015
B、
4028
2015
C、
2013
2014
D、
2014
2015
考点:数列的求和
专题:点列、递归数列与数学归纳法
分析:根据数列的递推关系,利用裂项法进行求和即可.
解答: 解:∵an+1=an+a1+n,a1=1,
∴an+1-an=1+n,
∴an=a1+(a2-a1)+…+(an-an-1)=1+2+…+n=
n(n+1)
2

1
an
=
2
n(n+1)
=2(
1
n
-
1
n+1
),
从而
1
a1
+
1
a2
+…+
1
a2014
=2(1-
1
2
+
1
2
-
1
3
+…+
1
2014
-
1
2015
)=2(1-
1
2015
)=
4028
2015

故选:B
点评:本题以数列的递推关系式为载体,主要考查数列求和,要求熟练掌握裂项法在数列求和过程中的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网