题目内容

已知正项数列{an}的前n项和Sn,且2
Sn
=an十1,n∈N*
(1)试求数列{an}的通项公式,
(2)设bn=
1
anan+1
,数列{bn}的前n项和为Bn,求证:Bn
1
2
考点:数列递推式,数列的求和
专题:等差数列与等比数列
分析:(1)由已知得4Sn=an2+2an+1,从而a1=1,(an+an-1)(an-an-1-2)=0,进而{an}是首项为1,公差为2的等差数列,由此能求出数列{an}的通项公式.
(2)由bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1
),利用裂项求和法能证明Bn
1
2
解答: (1)解:∵正项数列{an}的前n项和Sn,且2
Sn
=an十1,n∈N*
4Sn=an2+2an+1
∴n=1时,4a1=a12+2a1+1,解得a1=1,
当n≥2时,4an=4Sn-4Sn-1=an2+2an-an-12-2an-1
整理,得(an+an-1)(an-an-1-2)=0,
∵an>0,∴an-an-1-2=0,
∴{an}是首项为1,公差为2的等差数列,
∴an=1+(n-1)×2=2n-1.
(2)证明:bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1
),
∴Bn=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)=
1
2
(1-
1
2n+1
)
1
2
点评:本题考查数列的通项公式的求法,考查不等式的证明,是中档题,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网