题目内容
已知正项数列{an}的前n项和Sn,且2
=an十1,n∈N*
(1)试求数列{an}的通项公式,
(2)设bn=
,数列{bn}的前n项和为Bn,求证:Bn<
.
| Sn |
(1)试求数列{an}的通项公式,
(2)设bn=
| 1 |
| anan+1 |
| 1 |
| 2 |
考点:数列递推式,数列的求和
专题:等差数列与等比数列
分析:(1)由已知得4Sn=an2+2an+1,从而a1=1,(an+an-1)(an-an-1-2)=0,进而{an}是首项为1,公差为2的等差数列,由此能求出数列{an}的通项公式.
(2)由bn=
=
=
(
-
),利用裂项求和法能证明Bn<
.
(2)由bn=
| 1 |
| anan+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
解答:
(1)解:∵正项数列{an}的前n项和Sn,且2
=an十1,n∈N*,
∴4Sn=an2+2an+1,
∴n=1时,4a1=a12+2a1+1,解得a1=1,
当n≥2时,4an=4Sn-4Sn-1=an2+2an-an-12-2an-1,
整理,得(an+an-1)(an-an-1-2)=0,
∵an>0,∴an-an-1-2=0,
∴{an}是首项为1,公差为2的等差数列,
∴an=1+(n-1)×2=2n-1.
(2)证明:bn=
=
=
(
-
),
∴Bn=
(1-
+
-
+…+
-
)=
(1-
)<
.
| Sn |
∴4Sn=an2+2an+1,
∴n=1时,4a1=a12+2a1+1,解得a1=1,
当n≥2时,4an=4Sn-4Sn-1=an2+2an-an-12-2an-1,
整理,得(an+an-1)(an-an-1-2)=0,
∵an>0,∴an-an-1-2=0,
∴{an}是首项为1,公差为2的等差数列,
∴an=1+(n-1)×2=2n-1.
(2)证明:bn=
| 1 |
| anan+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Bn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,是中档题,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
若点P(x,y)在直线x+y=12上运动,则
+
的最小值为( )
| x2+1 |
| y2+16 |
A、
| ||||
B、
| ||||
| C、13 | ||||
D、1+4
|